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Abstract. This study identified homogeneous rainfall regions using a combination of cluster analysis and the L-moments 
approach. The L-moments of heavy rainfall events of various durations (0.25, 1, 6, 12, 24, 48, 72, 96, and 120 h) were 
analysed using seasonal (June-September) rainfall measurements at 47 meteorological stations over the period 2006-
2016. In the primary phase of this study, the homogeneity of Mumbai as a single region was examined by statistical 
testing (based on L-moment ratios and variations of the L-moments). The K-means clustering approach was applied 
to the site characteristics to identify candidate regions. Based on the most appropriate distribution, these regions 
were subsequently tested using at-site statistics to form the final homogeneous regions. For durations above 1h, 
the regionalisation procedure delineated six clusters of similarly behaved rain gauges, where each cluster represented 
one separate class of variables for the rain gauges. However, for durations below 1h, the regionalisation procedure 
was not efficient in the sense of identifying homogeneous regions for rainfall. Furthermore, the final clusters con-
firmed that the spatial variation of rainfall was related to the complex topography, which comprised flatlands (below 
or at mean sea level), urban areas with high rise buildings, and mountainous and hilly areas.

Keywords: regional analysis, L-moments, tests for homogeneity, K-means clustering, principal components analysis

Submitted 12 September 2018, revised 2 April 2019, accepted 4 June 2019

1.	 Introduction

Rainfall flooding is one of the most dangerous natural 
hazards as it affects the economy, environment, and popu-
lation. Some recent studies indicate that heavily urbanized 
megacities in low-lying coastal areas are hotspots for 
flooding (Hallegatte 2010). In Mumbai, which is one 
of the megacities along the coast of India, severe floods 
occur almost every year. Furthermore, the extreme rain-
fall event that occurred on July 26th, 2005 demonstrated 
the high spatio-temporal variability of rainfall events 
in different areas over a 24-h period (Lokanadham et al. 
2012). Therefore, it is vital to assess the regionalization 
of hydroclimatic variables such as flooding, evapotranspi-
ration, and rainfall in order to optimize efficiency in design 
and reduce uncertainties.

Regionalization is generally used when rain gauge data 
are not available at a target site or to improve at-site (single) 
estimates, especially for short data records (Malekinezhad, 
Zare-Garizi 2014; Sun et al. 2015; Halbert et al. 2016; 
Requena et al. 2016). This approach involves “trading time 
for space” by pooling observations for stations with similar 
behavior. Various rainfall regionalization techniques have 
been developed and applied by researchers worldwide, for 
example, in Pakistan (Khan et al. 2017), Slovakia (Gaál 
et al. 2009), the Brazilian Amazon (Santos et al. 2015), 
Jeju Island, Korea (Kar et al. 2017), and mid-Norway (Hai-

legeorgis, Alfredsen 2017). In India, rainfall regionalization 
techniques that have been developed and applied include 
principal components analysis (Nair et al. 2013), correlation 
analysis (Sinha et al. 2013), cluster analysis (Ahuja, Dhanya 
2012; Bharath, Srinivas 2015), neural networks (Saha et al. 
2017), and shared nearest neighbor (Kakade, Kulkarni 2017). 
However, most of these applications have been on a national 
rather than regional scale. In addition, most of these cluster 
analysis studies have been conducted using a top-down 
approach, which explains the top-down control of the large-
scale climatic attributes (e.g., mean annual precipitation, 
temperature, wind velocity, wind direction, and specific 
humidity) over regional hydrological processes and patterns 
(Hessburg et al. 2005). Based on these attributes, homogene-
ous regions are identified, which are expected to be reflected 
in the records of the hydrometeorological variables of inter-
est. In this context, the L-moments approach is a promising 
technique, and is a well-known and widely used procedure 
for regionalization (Hosking, Wallis 1997; Ngongondo 
et al. 2011; Rahman et al. 2013). This method is rela-
tively insensitive to outliers, and the parameter estimates 
are more reliable than conventional moment estimates, 
especially for small samples. Furthermore, the estimators 
of the L-moments are virtually unbiased (Smithers, Schulze 
2001). In this study, the L-moments algorithm with site 
characteristics (objective) and site statistical (subjective, 
process-based) pooling techniques were used to cluster 
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rain gauges within the region into groups, thus augmenting 
the comparability of the rain gauges.

The research presented in this paper was motivated 
by the fact that most of the studies in this region have used 
data from two Indian Metrological Department (IMD) sta-
tions (Colaba and Santacruz) to investigate the formation 
and prediction of extreme events and estimation of design 
rainfall amounts. Furthermore, the July 26th, 2005 event 
drove the local authorities (the Municipal Corporation 
of Greater Mumbai (MCGM)) to install a dense network 
of rain gauges to measure continuous and consistent rain-
fall. As a result, 60 rain gauges were installed that provided 
more than five years of steady, coherent observations. 
These rain gauges were installed without prior studies 
on the selection of optimal sites. Moreover, Parchure 
and Gedam (2018) used a priori knowledge of rainfall 
events, and considering the advantage of Self-Organising 
Maps (SOMs) for (e.g.), abstraction of attributes, displayed 
the distribution of each component, and for effective 
visualisation, analysed the clustered rain gauges in groups 
(regions). However, this is a time-consuming method when 
compared with the L-moment approach. Hence, the pri-
mary intent of this study is to identify homogeneous rainfall 
regions at the local scale using the L-moments approach. 

The specific objectives of this study are as follows:
•	 To perform a regionalization of heavy rainfall (of 0.25, 

1, 6, 12, 24, 48, 72, 96, and 120 h duration) using 
the L-moments approach.

•	 To check whether the study area behaves as a single 
homogeneous region.

•	 To identify homogeneous rainfall regions by combin-
ing the results obtained from the site characteristics 
and site statistics pooling techniques.

•	 To evaluate the performance of the top-down approach, 
i.e. the L-moments approach

2.	 Study area and data description

Mumbai is situated on the western coast of India 
and extends between 18.00°-19.20°N and 72.00°-73.00°E. 
The region has a humid, tropical climate, with monsoons 
that move in from the southwestern Indian Ocean from 
June to September. Initially, Mumbai was composed 
of a group of islands that have now been reclaimed 
to meet the demand for land. This reclamation has resulted 
in the region having a complex topography that com-
prises flatlands (below or at mean sea level), urban areas, 
and mountainous and hilly areas (for instance, the Sanjay 
Gandhi National Park that is located in the northern part 
has an elevation of up to 450 m above mean sea level). 
Sub-hourly precipitation data (at 15 min intervals) were 

acquired from the MCGM. These data were collected from 
60 rain gauges for the southwest monsoon period (June-
September) from 2006 to 2016. However, after accounting 
for missing data, newer installations, as well as the reli-
ability, consistency, and operational period of each rain 
gauge, this study considered data from 47 of these gauges. 
Figure 1 shows the names, unique codes, and locations 
of these gauges on a Shuttle Radar Topography Mission 
(SRTM) elevation map.

3.	 Methodology

This section describes the methodology used to achieve 
the objectives of this study.

3.1.	Screening of data

Continuous rainfall data from the rain gauges were 
analyzed, and a validation method was used to ensure 
the reliability of the data and identify suspect or incorrect 
values. The suspect or incorrect data were not modified 
but instead were flagged appropriately (e.g., as ‘suspect’ 
or ‘missing’). A range test (Estévez et al. 2015) and double 
mass curve were applied subsequently. Only stations with 
more than three years of data were screened. This pro-
cedure resulted in the inclusion of 47 stations. A series 
of maximum rainfall amounts for durations of 0.25, 1, 3, 
6, and 12 h and 1-5 d was acquired using a movable time 
window method.

Fig. 1. Names, unique codes, and locations of rain gauge stations 
throughout Mumbai (on SRTM elevation map)



Homogeneous regionalization via L-moments for Mumbai City, India 75

Furthermore, because the threshold value affects 
the number of data points that are extracted (Pham, Lee 
2015), the threshold values proposed by IMD for identify-
ing heavy storms were used (Table 1). The discordancy 
test was used to identify and remove outliers; this test was 
also used to identify the appropriate datasets for regionali-
zation. If a vector:

controls the L-moment ratio for the site i, then the discor-
dancy measure may be characterized as:

where ui is the vector of L-CV, L-Skewness, and L-Kur-
tosis, S is the covariance matrix of ui, and ū is the mean 
vector of ui.

3.2.	Homogeneous rainfall region

The algorithm by Hosking and Wallis (1997) has been 
used to identify homogeneous rainfall regions in various 
countries, including Korea (Kar et al. 2017), Brazil (Car-
valho et al. 2016), and Jakarta (Liu et al. 2015). The first 
step involves formation of candidate regions using cluster 
analysis of the site characteristics and testing the homo-
geneity of these proposed regions using at-site statistics 
(Castellarin et al. 2008; Malekinezhad, Zare-Garizi 2014). 
Site characteristics and site statistics are defined as follows 
(Gaál et al. 2009):
•	 Site characteristics are either quantities that are determined 

from the long-term climate of the site, (e.g., the mean 
yearly precipitation) or quantities that are known even 
before rainfall measurements are obtained (e.g., location, 
elevation, and other site physiographic properties).

•	 Site statistics are the measurements or any results of sta-
tistical processing of the rainfall data observed at the site.

3.2.1. Site characteristics

The site characteristics (or variables) were prepared for 
each rain gauge station. The first three variables (latitude, 
longitude, and elevation) are geographical characteristics. 
The next 10 variables represent the long-term precipitation 
regime; these include the mean annual precipitation, mean 
monthly precipitation, maximum monthly precipitation, 

and mean annual number of wet days (i.e., with daily pre-
cipitation of 4 mm or more). The remaining seven variables 
describe the distance from the coast along different wind 
directions (0, 15, 30, 45, 60, 75, and 90° from the west, 
as shown in Figure 1). To reduce the number of variables, 
a principal component analysis (PCA) technique was 
applied with minimal loss of information. The PCA method 
identifies the most critical relationship structures among 
several variables. As a result, a few linear combinations 
of the original variables are used to describe the significant 
part of the overall variance. These optimized variables 
were used as inputs to the K-means cluster algorithm 
(MacQueen 1967), which uncovered the inherent struc-
tures in the data. The cluster algorithm starts by computing 
the centroid of each cluster and then calculates the dis-
tances between the current data vector and each of these 
centroids. The current vector is assigned to the cluster with 
the closest centroid. Because this is a dynamic method, 
vectors can change clusters after being assigned. This pro-
cess is repeated until all the vectors have been assigned 
to a cluster, and the members of every cluster are closer 
to the centroid of their assigned cluster than to the mean 
of the other clusters (Genolini et al. 2016; Dullo et al. 2017). 
There is no specific technique for optimizing the number 
of clusters; therefore, the following coefficients were used:
•	 Connectivity (Handl et al. 2005) is the degree to which 

the observations are kept in the same group as their clos-
est neighbors in the data space. The connectivity value 
ranges from zero to infinity and should be minimized.

•	 Dunn Index (Dunn 1973) consolidates the divergence 
among clusters and their measurements to gauge 
the most substantial number of clusters. A higher Dunn 
Index implies better grouping.

•	 Silhouette width (Rousseeuw 1987) measures 
the closeness of a data vector to the assigned cluster 
rather than a different one. The average dissimilarity 
between points demonstrates the structure of the data 
and consequently its possible groups (Rao, Srinivas 
2008). Silhouette width values close to 1.0 indicate 
unusual groupings.
Rao and Srinivas (2008) noted that the Dunn Index 

is very sensitive to outliers; hence, in this study, the sil-
houette width was used first, followed by the Dunn Index, 
and finally the connectivity index. The optimal selection 
also maximized the quality of the clusters obtained.

3.2.2. Site statistics

The L-moments method works as a linear func-
tion of probability weighted moments that are defined 
by the general form:

Table 1. Threshold values used to identify heavy storms from 
sub-hourly data

Duration [h] 0.25 1 12 24 48 96

Threshold [mm] 10 25 52 64.5 90 118

ui = [t(i), t3
(i), t4

(i)]T

Di = 1−3 (ui – ū)T S –1 (ui – ū) (2)

(1)
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where λr is the straight capacity of the rth L-moment 
of a distribution X, and r is a non-negative integer with 
values 1-3. Using equation (3), the first four L-moments 
are composed as follows:

The L-moment ratios are defined as:

where: τ2 is the measure of covariance (scale); τ3 is the meas-
ure of skewness (with range 0-1); τ4 is the measure of kurtosis 
(peakedness). These ratio estimators and their respective 
graphical charts are especially significant for identifying 
the distributional properties of skewed data.

3.2.3. Heterogeneity test

A homogeneous region is a set of sites whose probabil-
ity distributions are approximately identical after rescaling 
their respective site variables. To project a homogeneous 
region, a statistical comparison of the site distributions 
of L-moment samples was performed. Hosking and Wallis 
(1993) recommended a statistical test of the heterogene-
ity (H) of a proposed homogeneous region. Accordingly, 
the heterogeneity was computed as:

Here, μv and σv are the mean and standard deviation 
of the simulated data, respectively. Vobs was obtained from 
the regional data, based on three V Statistics (V1, V2, V3) 
defined as follows:

The region is sensibly homogeneous if H < 1, potentially 
homogeneous if 1 ≤ H < 2, and definitely heterogeneous  
if H ≥ 2 (Hosking, Wallis 1993).

3.3.	Goodness of fit of the regionalisation algorithm

To evaluate the performance of the L-moment 
approach, we compared it with an SOM regionalisation 
method (Parchure, Gedam 2018) using two regionalisation 
efficiency measures, namely, regionalisation efficiency 
(RE) and allocation efficiency (AE) (Núñez et al. 2016):

where: HR – number of homogeneous (H1 < 2.0) subre-
gions (n); TR – total number of subregions (homogeneous 
+ heterogeneous) (n); SAHR – stations allocated in homo-
geneous subregions (n); TS – total number of stations 
available in the regionalisation process (n).

Once the subregions have been delineated, the homo-
geneity analysis is performed on these subregions using 
Hosking and Wallis’s (1997) H1 heterogeneity measure. 
The H1 and regionalisation efficiency measures were ana-
lysed using the rainfall depths of various durations. 

Most of the statistical analyses and graphical illus-
trations of the results of this study were developed with 
the statistical program R-3.2.0, Orange Canvas 3.7.1 soft-
ware, and MS Excel version 2007.

4.	 Results and discussion

This section presents the results of this study.

4.1.	Mumbai as a single region

Mumbai was inspected as a single homogeneous region. 
The homogeneity test results, shown in Table 2, indicate 
that Mumbai could be regarded as a single homogeneous 
region for precipitation amounts of 1-4 d durations but not 
for those of less than 1 d duration. This distinction could be 
due to the occurrence of intense one-day duration storms. 
As such, these heavy storms are very unlikely to last for 
one or more consecutive days. This may be the explanation 
for the homogeneity of the other multiday precipitation 
amounts. Table 2 also shows another fascinating part 
of the heterogeneity investigation. The definitely heteroge-
neous (H > 2.0) behaviour occurs once again for the 5-day 
duration precipitation, perhaps due to changes in climatic 
parameters.

λr = 
1 
r

 ∑     (–1)k E {Xr – k:r}k = 0
r – 1 r – 1

k( ) (3)

(4)

(5)

(6)

(7)

(8)

λ1 = EX

λ2 =  1−2  E(X2:2 – X1:2)

λ3 =  1−3  E(X3:3 – 2X2:3 + X1:3)

λ4 =  1−4  E(X4:4 – 3X3:4 + 3X2:4 – X1:4)

τ2 = 
λ2

λ1
τ3 = 

λ3

λ2
τ4 = 

λ4

λ2
, ,
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AE =  × 100
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H = 
Vobs – µv

σv
(9)

(10)
∑N

i = 1 ni (τ i2 – τ R2)2

∑N
i = 1 ni

V = { }
1−2
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4.2.	Homogeneous rainfall regions
4.2.1. Site characteristics

The PCA method was used to optimize the input vari-
ables; this resulted in nine components that captured about 
95% of the variance in the total input variables (Fig. 2).

The input variables for the cluster analysis determined 
by the PCA results are as follows:
•	 Longitude and Latitude: these variables describe 

the location of the gauges.
•	 Five wind direction angles: these angles are in the range 

195°-255°, indicative of the southwesterly winds from 
the Arabian Sea that blow over the study area.

•	 Two precipitation variables: these are the mean 
annual precipitation and mean July precipitation (July 
is the wettest month of the year).
The optimum number of clusters was derived using 

the K-means cluster technique, the nine principal 
components, and the three internal indices described 
in section 3.2.1. Table 3 shows the values obtained 

from the cluster stages 2-8 with the K-means cluster 
technique. Four candidate precipitation regions were 
identified. The homogeneity of each region was inspected 
for all of the selected durations. Figure 4 (left) shows 
the location and composition of each region (cluster). 
A compact overview of the most relevant variables 
of the regions is shown in Table 5. Another intrigu-
ing insight from Table 4 is that the dominant part 
of the region did not pass the homogeneity test. Figure 4 
also shows that a few sites are scattered in the geographi-
cal space. These results were the bases for our conclusion 
that a combination of the site characteristics and site sta-
tistics must be used for homogeneous regional analysis. 
The specific outcomes of this analysis are as follows:
•	 Region SC#1 (region #1 for site characteristics) consists 

of 16 stations located in the area near the Arabian Sea, 
mainly in the southwestern part of Mumbai. Table 4 
indicates that this region is heterogeneous for precipita-
tion durations up to 6 h, which might be due to the effect 
of air masses from the territory of the Arabian Sea. 
Also, the detailed analysis of the data highlighted 
the extraordinary amount of rainfall measured at Worli 
(57.4-89.14 mm) and Wadala (55.12 mm) for 15 min 
events.

•	 Region SC#2 is the largest among the regions stud-
ied based on site characteristics. This region, which 
comprises 18 sites covering the southwestern part 
and extending further inland, represents low land, urban 
areas with high-rise buildings, and parts of the wind-
ward side of the Sanjay Gandhi National Park. The rain 
gauge cluster for this region consists of a few sites 
having minimum and maximum mean annual precipita-
tion and mean July precipitation (Table 5). The region 
was identified as homogeneous according to the H test 
except for 15-min precipitation amounts.

•	 Region SC#3 is located in the eastern part of Mumbai 
and consists of five sites covering the leeward side 
of the Sanjay Gandhi National Park. The sites are 
fairly scattered at various altitudes; however, the mean 

Fig. 2. Nine principal components captured about 95% of the var-
iance in the total variables

Table 2. Summary of homogeneity tests for the Mumbai
region as a whole

Rainfall
time period 

[h]

H Test

H1 H2 H3

0.25 12.7 12.88 9.77

1 12.03 13.35 11.71

6 5.33 0.24 −2.58

12 3.39 −0.82 −2.64

24 1.47 −1.51 −2.93

48 −0.47 −2.32 −2.52

72 −1.43 −2.99 −3.33

96 −1.5 −2.78 −2.77

120 12.88 14.77 12.31

Table 3. Results obtained from 2 to 8 cluster stages with K-means
clustering method

Internal 
measures Connectivity Dunn Silhouette

2 21.72 0.17 0.24

3 23.44 0.2 0.25

4 23.75 0.22 0.26

5 40.88 0.2 0.17

6 41.15 0.12 0.22

7 41.48 0.14 0.23

8 45.67 0.15 0.22
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elevation is the highest among the four regions  
(Table 5). The cluster analysis isolated these sites prin-
cipally because they have the highest station altitudes, 
which resulted in the heterogeneity of the region for 
rainfall durations up to 3 d (Table 4). The detailed 
analysis of the data also indicates significant variation 
in rainfall amount, which may be due to the funnelling 
action by the Chembur and Sanjay Gandhi National 
Park hills.

•	 Region SC#4 consists of 8 sites located predominantly 
in the western part of the city between the Arabian Sea 
and windward side of the Sanjay Gandhi National Park. 
This region was identified as homogeneous according 
to the H test (Table 4). 
The L-moments graphs shown in Figure 3 indicate 

that three distinct groups of sites comprise the region 
SC#2 (top graph). These sites are located in two dif-
ferent geographical regions. The first group is made 
up of 4 sites from the southeastern parts (the lowlands) 
of Region SS#5: Kurla, Rawali camp, Deonar, and Octroi 
Mankhurd. The second group consists of 4 stations 
located near the foot of the Sanjay Gandhi National Park 
hills on the windward side (Region SS#6). The third 
group includes 10 sites from the lowland and urban 
parts of Region SS#2. The L-moments diagram (Fig. 3) 
of region SC#3 suggested moving the Vikhroli station 
to Region SS#5.

Therefore, based on the L-moments diagram, a further 
subdivision of Regions SC#2 and SC#3 was performed 
using site statistics. This analysis excluded the unusu-
ally wet sites (Worli and Wadala) from Region SC#1. 
The results indicate that the region becomes homogeneous 
for the one-hour precipitation amount, while the H value 
decreases from 3.87 to 3.18 for the 15-min rainfall amount.

4.2.2. Site statistics

The final precipitation regionalization was created 
using the site statistics and the results of the site character-
istics analysis as inputs. The primary intent was to reflect 
the characteristics of the individual geomorphological units 
and consider an objective measure of similarity within 
the regions.  Six regions were obtained from combining 
the best features of the two pooling strategies. The com-
position and geographical locations of these regions are 
shown in Figure 4 (right), and a synopsis of their physi-
cal and climatological characteristics is given in Table 5. 
In addition, Table 4 shows the heterogeneity measures 
for the selected rainfall durations. The specific outcomes 
of this analysis are as follows: 

•	 Region SS#1 consists of 14 stations in the area near 
the Arabian Sea, mainly covering the southwestern 
area of Mumbai. This region is identical to Region 
SC#1, except for the two stations (Worli and Wadala) 
that recorded extraordinary rainfall events. The H test 
results for rainfall durations of 1 h and above suggested 
that this region is homogeneous.

•	 Region SS#2 comprises 10 sites, the majority of which 
are also in Region SC#2; the stations that are located 
near the mountain area and leeward side of Chembur 
Hill are excluded from Region SC#2. This region was 
identified as homogeneous except for the 15-min pre-
cipitation.

•	 Region SS#3 comprises four sites and stretches through 
the leeward side of the Sanjay Gandhi National Park 
hills to the east of Mumbai. This region was identified 
as homogeneous for most of the durations probably 
due to the shadowing effect of the hills, which reduces 
the rainfall.

•	 Region SS#4 is similar to Region SC#4 because of its 
high level of homogeneity.

•	 Region SS#5 consists of five sites located between 
the Sanjay Gandhi National Park and Chembur hills. 
These stations are grouped together due to the fun-
nelling action of the hills. The H test results indicated 

Fig. 3. L-moments graph for Regions SC#2 and SC#3 for 15 min 
precipitation duration
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that this region is homogeneous for rainfall durations 
of 1 h and above except for the 15-min rainfall duration.

•	 Region SS#6 includes four sites on the windward side 
of Sanjay Gandhi National Park and covers the area 
west of Mumbai near the foot of the hills. 
These results confirmed the effect of the complex topog-

raphy of the study area on the spatial variation of rainfall. 

The topography includes the flatland near the Arabian Sea, 
the urban areas with high-rise buildings, and the mountains 
and hilly areas (particularly the Sanjay Gandhi National 
Park). In addition, the intense precipitation recorded 
over Region SS#2, which is located in the urban pocket, 
supports the findings of Paul et al. (2018) that associates 
extreme precipitation with urbanization.

Table 4. Summary of homogeneity (H) test values of sites identified based on site statistics and site characteristics (in parentheses) 
for each region and rainfall duration

Rainfall 
duration 

[h]
H Test Region SS#1

(SC#1)
Region SS#2

(SC#2)
Region SS#3

(SC #3)
Region SS#4

(SC#4) Region SS#5 Region SS#6

0.25 H1 3.65
(3.87)

2.64
(5.59)

5.1
(6.27)

−0.72
(−0.72) 2.08 5.65

1 H1 0.94
(3.88)

−0.01
(0.8)

1.42
(1.19)

−0.26
(−0.26) 1.22 1.51

6 H1 0.25
(0.15)

−1.19
(−1.71)

0.79
(1.24)

−1.16
(−1.16) −0.53 −0.85

12 H1 −1.06
(−0.89)

−1.54
(−1.98)

1.29
(1.81)

−0.35
(−0.35) −1.26 −0.68

24 H1 −1.95
(−1.76)

−1.45
(−2.28)

0.9
(1.86)

0.03
(0.03) −1.6 −0.8

48 H1 −3.12
(−2.97)

−1.52
(−2.04)

1.1
(1.42)

−0.63
(−0.63) −1.17 −0.57

72 H1 −2.58
(−2.64)

−0.98
(−2)

0.26
(0.84)

−0.66
(−0.66) −0.85 −1

96 H1 −2.8
(−2.62)

−1.63
(−2.04)

0.93
(0.93)

−0.33
(−0.33) −0.66 −0.5

120 H1 −1.03
(−1.12)

−0.63
(−0.63)

−0.69
(1.25)

0.48
(0.48) −0.13 0.37

Table 5. Summary of relevant characteristics of sites identified based on site statistics and site characteristics (in parentheses)  
for each region

Relevant 
characteristics

Region SS#1
(SC#1)

Region SS#2
(SC#2)

Region SS#3
(SC#3)

Region SS#4
(SC#4) Region SS#5 Region SS#6

Number of stations 14*
(16)

10
(18)

4
(5)

8
(8) 5 4

Range of H [m] 11.66-1.28
(11.66-31.28)

12.31-37.2
(8.84-50.09)

10.71-85.68
(10.71-85.68)

13.86-24.99
(13.86-24.99) 8.84-29.61 28.26-50.09

Average of H [m] 21.77
(21.88)

22.52
(23.96)

40.71
(39.12)

20.63
(21.6) 16.93 37.3

Range of
Mean Annual
Precipitation
[mm]

1791.68-2228.02
(1791.68-2429.21)

1601.8-2393.33
(1601.8-2598.32)

2137.4-2594.28
(1940.39-2594.28)

1793.35-2616.77
(1793.35-2616.77) 2218.32-2598.32 1905.05-2227.82

Median of
Mean Annual
Precipitation
[mm]

1997.49 (2039.57) 2181.02
(2219.2)

2435.06
(2099.13)

2132.66
(2227.76) 2429.21 2102.46

Range of
Mean July
Precipitation
[mm]

651.7-930.89
(651.7-947.86)

637.37-954.51
(637.37-1139.48)

824.11-1139.48
(675.73-1090.6)

675.73-1090.6
(765.48-896.75) 746.51-1034.15 725.77-922.36

Median of
Mean July
Precipitation
[mm]

778.83
(797.7)

845.58
(866.42)

949.15
(853.88)

803.16
(804.32) 917.98 853.73
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4.2.3. Heterogeneity test

The six regions that were identified by the site sta-
tistics were also identified as potentially homogeneous 
regions according to the H test for rainfall durations 
of 1 h and above (Table 4). However, the spatial variation 
in the 15-min rainfall data resulted in the heterogeneity 
of the regions. The rapid reduction in spatial variation 
as the rainfall duration increases explains why the regions 
were identified as homogeneous for rainfall durations  
of 1 h and above. Because the H test is a somewhat subjec-
tive process, unusual sites may be removed and the sites 
regrouped to improve the homogeneity of the identi-
fied regions. However, further removal and regrouping 
of the sites was not performed for the following reasons:
•	 To avoid loss of valuable information on precipitation 

in the analysis of dissimilar sites.
•	 To avoid the unnecessary burden of evaluating extraor-

dinary events, especially where removal of such sites 
produces minimal change in the H Value.

4.3.	Goodness of fit of the regionalisation algorithm

Figure 5a shows the box-whisker plot of the H1 
heterogeneity values of the two regionalisation meth-
ods (L-moment and SOM) for the rainfall with 0.25 h 
duration. The SOM method showed the lowest H1 dis-
persion; all of its values were below the critical value 

(Hc = 2). These results highlighted that the direct appli-
cation of cluster analysis by itself does not guarantee 
an automatic delimitation of homogeneous regions, which 
supports the findings of Hosking and Wallis (1997), Ilorme 
and Griffis (2013) and Wazneh et al. (2015).

Similarly, Figure 5b shows the efficiency values 
(RE and AE). SOM showed higher RE (AE) efficiency 
(100%) as compared to the L-moment approach (20%). 
This method was based on the predefined region sizes 
and a function of MAP, which depicts consistency 
in the strong relationships between precipitation variabil-
ity, L-moment-ratios, and MAP (Wallis et al. 2007; Núñez 
et al. 2011).

These results support the findings of Clarke (2010) 
and Núñez et al. (2016), highlighting the limitations 
of the L-moment approach: (a) Meteorological net-
works cannot fully represent the spatial continuum 
of the large-scale variables and attributes; (b) Cluster 
analysis has been used in general with the expectation 
of identifying homogeneous regions, but in physical 
terms, it remains to be established why such regions 
should be considered homogeneous. Hence, a subjec-
tive judgement in the regionalisation process is warranted, 
owing to a possibility of dissociation between the expres-
sion of Mother Nature (to paraphrase J.R. Wallis) and how 
the monitoring station networks and the associated statisti-
cal analysis procedures capture this expression (Hosking, 
Wallis 1997; Wazneh et al. 2015).

Fig. 4. Composition and location of regions using site characteristics (left) and refinement using site statistics (right)
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5.	 Conclusions

The main objective of this research was to identify 
the homogeneous rainfall regions of Mumbai based 
on a combined analysis of site characteristics and site statis-
tics. The study also focused on the climatological conditions 
of the city using rainfall amounts of various durations 
(0.25, 1, 6, 12, 24, 48, 72, 96, and 120 h). The main results 
and conclusions are as follows:
1.	 Mumbai can be considered as a single homogenous 

region for precipitation events of 1-4 d durations but not 
for those of less than one day duration. This could be 
due to the occurrence of intense storms of one day 
or shorter duration. 

2.	 To obtain the homogeneous regions, it is advisable 
to evaluate the variance in the homogeneous sub-
regions obtained via L-moment regarding changes 
in the temporal scale of the response variable.

3.	 The combination of two techniques, namely cluster 
analysis (objective) and site statistical pooling (subjec-
tive) for identification of homogeneous region support 
the findings of Clarke (2010) and Núñez et al. (2016) 
and highlighted the limitations of these approaches.

4.	 The regions based on the site statistics approach were 
identified as potentially homogeneous according 
to the H Test for rainfall durations of 1 h and above. 
However, spatial variation in the 15-min rainfall data 
resulted in the heterogeneity of the regions. The rapid 
reduction in spatial variation as the rainfall duration 

increases explains why the regions were identified 
as homogeneous for rainfall durations of 1 h and above. 
Because the H Test is a somewhat subjective process, 
unusual sites may be removed, and the sites regrouped 
to improve the homogeneity of the identified regions. 
However, further removal and regrouping of the sites 
was not performed. These results support the SOM 
approach adopted by Parchure and Gedam (2018) 
to cluster rain gauges in groups (regions).

5.	 The six clusters of rainfall gauges obtained con-
firm that the spatial variation of rainfall is a result 
of the complex topography of Mumbai, which includes 
the flatland near the Arabian Sea, the urban areas with 
high-rise buildings, and the mountainous and hilly 
areas (particularly the Sanjay Gandhi National Park 
located in the northern part).

The limitations of the study are the following:
1.	 This study only identified homogeneous rainfall regions. 

A potential topic of future research would be the com-
putation of appropriate probability distribution functions 
and design rainfall quantities along with their return 
periods.

2.	 Further research is needed to test the hypothesis 
of clusters using other climatological data (such as tem-
perature, wind speed, and wind direction) that are 
measured by MCGM at the 47 stations and radar data 
obtained by the IMD.

3.	 The discussions of this study have alluded to possible 
influences from the complex orography and coastal 
proximity of Mumbai. The significance of these influ-
ences needs to be confirmed through future studies 
of multiple cases across different cities. 

Acknowledgments
The authors thank the MCGM for providing rain gauge 

data and the Indian Metrological Department, Mumbai, 
for their comments and suggestions, which significantly 
contributed to improving the clarity of the paper.

Bibliography

Ahuja S., Dhanya C.T., 2012, Regionalization of rainfall 
using RCDA cluster ensemble algorithm in India, Journal 
of Software Engineering and Applications, 5 (8), 568-573,  
DOI: 10.4236/jsea.2012.58065

Bharath R., Srinivas V.V., 2015, Regionalization of extreme 
rainfall in India, International Journal of Climatology, 35 (6), 
1142-1156, DOI: 10.1002/joc.4044

Carvalho J.R.P. de, Nakai A.M., Monteiro J.E.B.A., 2016, Spatio-
temporal modeling of data imputation for daily rainfall series 

Fig. 5. Representations of efficiency evaluation: (a) H1 boxplots 
for various regionalisation methods; (b) regionalisation and allo-
cation efficiency bar plots for various regionalisation methods



82 A.S. Parchure, S.K. Gedam

in homogeneous zones, Revista Brasileira de Meteorologia, 
31 (2), 196-201, DOI: 10.1590/0102-778631220150025

Castellarin A., Burn D.H., Brath A., 2008, Homogeneity test-
ing: how homogeneous do heterogeneous cross-correlated 
regions seem?, Journal of Hydrology, 360 (1-4), 67-76,  
DOI: 10.1016/j.jhydrol.2008.07.014

Clarke R., 2010, On the (mis)use of statistical methods in hydro-
climatological research, Hydrological Sciences Journal,  
55 (2), 139-144, DOI: 10.1080/02626661003616819

Dullo T.T., Kalyanapu A.J., Teegavarapu S.V., 2017, Evaluation 
of changing characteristics of temporal rainfall distribution 
within 24-hour duration storms and their influences on peak 
discharges: case study of Asheville, North Carolina, Journal 
of Hydrologic Engineering, 22 (11), DOI: 10.1061/(ASCE)
HE.1943-5584.0001575

Dunn J.C., 1973, A fuzzy relative of the ISODATA process 
and its use in detecting compact well-separated clusters, 
Journal of Cybernetics, 3 (3), 32-57, DOI: 10.1080/01969 
727308546046

Estévez J., Gavilán P., García-Marín A.P., Zardi D., 2015, Detec-
tion of spurious precipitation signals from automatic weather 
stations in irrigated areas, International Journal of Climatol-
ogy, 35 (7), 1556-1568, DOI: 10.1002/joc.4076

Gaál L., Kyselý J., Szolgay J., 2008, Region-of-influence 
approach to a frequency analysis of heavy precipitation 
in Slovakia, Hydrology and Earth System Sciences, 12 (3), 
825-839, DOI: 10.5194/hess-12-825-2008

Gaál L., Szolgay J., Lapin M., Faško P., 2009, Hybrid approach 
to the delineation of homogeneous regions for regional 
precipitation frequency analysis, Journal of Hydrology 
and Hydromechanics, 57 (4), 226-249, DOI: 10.2478/v10098-
009-0021-1

Genolini C., Ecochard R., Benghezal M., Driss T., Andrieu S., 
Subtil F., 2016, kmlShape: An efficient method to cluster 
Longitudinal data (time-series) according to their shapes, 
PLOS One, 11 (6), DOI: 10.1371/journal.pone.0150738

Hailegeorgis T.T., Alfredsen K., 2017, Regional flood frequency 
analysis and prediction in ungauged basins including esti-
mation of major uncertainties for mid-Norway, Journal 
of Hydrology: Regional Studies, 9, 104-126,  DOI: 10.1016/j.
ejrh.2016.11.004

Halbert K., Nguyen C.C., Payrastre O., Gaume E., 2016, Reducing 
uncertainty in flood frequency analyses: a comparison of local 
and regional approaches involving information on extreme 
historical floods, Journal of Hydrology, 541 (Part A), 90-98, 
DOI: 10.1016/j.jhydrol.2016.01.017

Hallegatte S., 2010, Flood risks, climate change impacts 
and adaptation benefits in Mumbai. An initial assess-
ment of socioeconomic consequences of present 
and climate change induced flood risks and of possible adap-

tation options, OECD Environment Working, Papers, 27,  
DOI: 10.1787/5km4hv6wb434-en

Handl J., Knowles J., Kell D.B., 2005, Computational cluster 
validation in post-genomic data analysis, Bioinformatics,  
21 (15), 3201-3012, DOI: 10.1093/bioinformatics/bti517

Hessburg P.F., Kuhlman E.E., Swetnam T.W., 2005, Examining 
the recent climate through the lens of ecology: inferences 
from temporal pattern analysis, Ecological Applications,  
15 (2), 440-457

Hosking J.R.M., Wallis J.R., 1993, Some statistic useful in region 
frequency analysis, Water Resources Research, 29 (2), 271-
281, DOI: 10.1029/92WR01980

Hosking J.R.M., Wallis J.R., 1997, Regional frequency analysis: 
an approach based on L-moments, Cambridge University 
Press, Cambridge, UK, 224 pp.

Ilorme F., Griffis V.W., 2013, A novel procedure for delineation 
of hydrologically homogeneous regions and the classi-
fication of ungauged sites for design flood estimation, 
Journal of Hydrology, 492, 151-162, DOI: 10.1016/j.jhy-
drol.2013.03.045

Kakade S.B., Kulkarni A., 2017, Seasonal prediction of summer 
monsoon rainfall over cluster regions of India, Journal 
of Earth System Science, 126 (34), DOI: 10.1007/s12040-
017-0811-5

Kar K.K., Yang S.-K., Lee J.-H., Khadim F.K., 2017, Regional 
frequency analysis for consecutive hour rainfall using 
L-moments approach in Jeju Island, Korea, Geoenvironmen-
tal Disasters, 4 (18), DOI: 10.1186/s40677-017-0082-0

Khan S.A., Hussain I., Hussain T., Faisal M., Muhammad Y.S., 
Shoukry A.M., 2017, Regional frequency analysis of extremes 
precipitation using L-moments and partial L-Moments, 
Advances in Meteorology, DOI: 10.1155/2017/6954902

Liu J., Doan C.D., Liong S.-Y., Sanders R., Dao A.T., Fewtrell 
T., 2015, Regional frequency analysis of extreme rainfall 
events in Jakarta, Natural Hazards, 75 (2), 1075-1104,  
DOI: 10.1007/s11069-014-1363-5

Lokanadham B., Gupta K., Nikam V., 2012, Characterization 
of spatial and temporal distribution of monsoon rainfall over 
Mumbai, ISH Journal of Hydraulic Engineering, 15 (2), 
69-80, DOI: 10.1080/09715010.2009.10514941

MacQueen J.B., 1967, Some methods for classification and analy-
sis of multivariate observations, [in:] Proceedings of the Fifth 
Berkeley Symposium on Mathematical Statistics and Prob-
ability. Volume 1: Statistics, L.M. Le Cam, J. Neyman (eds.), 
University of California Press, Berkeley, 281-297

Malekinezhad H., Zare-Garizi A., 2014, Regional frequency 
analysis of daily rainfall extremes using L-moments 
approach, Atmósfera, 27 (4), 411-427, DOI: 10.1016/S0187-
6236(14)70039-6



Homogeneous regionalization via L-moments for Mumbai City, India 83

Nair A., Mohanty U.C., Acharya N., 2013, Monthly prediction 
of rainfall over India and its homogeneous zones during mon-
soon season: a supervised principal component regression 
approach on general circulation model products, Theoretical 
and Applied Climatology, 111 (1-2), 327-339, DOI: 10.1007/
s00704-012-0660-8

Ngongondo C.S., Xu C.Y., Tallaksen L.M., Alemaw B., Chirwa T., 
2011, Regional frequency analysis of rainfall extremes in South-
ern Malawi using the index rainfall and L-moments approaches, 
Stochastic Environmental Research and Risk Assessment,  
25 (7), 939-955, DOI: 10.1007/s00477-011-0480-x

Núñez J.H., Hallack- Alegría M., Cadena M., 2016, Resolving 
regional frequency analysis of precipitation at large and com-
plex scales using a bottom-up approach: The Latin America 
and the Caribbean Drought Atlas, Journal of Hydrology, 538, 
515-538, DOI: 10.1016/j.jhydrol.2016.04.025

Núñez J.H., Verbist K., Wallis J.R., Schaefer M.G., Morales 
L., Cornelis W.M., 2011, Regional frequency analysis 
for mapping drought events in north-central Chile, Jour-
nal of Hydrology, 405 (3-4), 352-366, DOI: 10.1016/j.
jhydrol.2011.05.035

Parchure A.S., Gedam S.K.,  2018, Precipitation  regionaliza-
tion using Self-Organizing Maps for Mumbai City, India, 
Journal of Water Resource and Protection, 10 (9), 939-956,  
DOI: 10.4236/jwarp.2018.109055

Paul S., Ghosh S., Mathew M., Devanand A., Karmakar S.,  
Niyogi D., 2018, Increased spatial variability and intensi-
fication of extreme monsoon rainfall due to urbanization,  
Scientific Reports, 8 (3918), DOI: 10.1038/s41598-018-22322-9

Pham V.H., Lee B.R., 2015, An image segmentation approach 
for fruit defect detection using k-means clustering and graph-
based algorithm, Vietnam Journal of Computer Science,  
2 (1), 25-33, DOI: 10.1007/s40595-014-0028-3

Rahman M., Sarkar S., Najafi M.R., Rai R.K., 2013, Regional 
extreme rainfall mapping for Bangladesh using L-moment 
technique, Journal of Hydrologic Engineering, 18 (5),  
DOI: 10.1061/(ASCE)HE.1943-5584.0000663

Rao A.R., Srinivas V.V., 2008, Regionalization of watersheds. 
An approach based on cluster analysis, Water Science 
and Technology Library Series, 58, Springer Netherlands, 
245 pp.

Requena A.I., Chebana F., Mediero L., 2016, A complete 
procedure for multivariate index-flood model application, 
Journal of Hydrology, 535, 559-580, DOI: 10.1016/j.jhy-
drol.2016.02.004

Rousseeuw P.J., 1987, Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis, Journal of Computational 

and Applied Mathematics, 20, 53-65, DOI: 10.1016/0377-
0427(87)90125-7

Saha M., Mitra P., Nanjundiah R.S., 2017, Deep learning for pre-
dicting the monsoon over the homogeneous region of India, 
Journal of Earth System Science, 126 (54), DOI: 10.1007/
s12040-017-0838-7

Santos E.B., Lucio P.S., Silva C.M.S., 2015, Precipitation region-
alization of the Brazilian Amazon, Atmospheric Science 
Letters, 16 (3), 185-192, DOI: 10.1002/asl2.535

Sen S., Vittal H., Singh T., Singh J., Karmakar S., 2013,  
At-site design rainfall estimation with a diagnostic check for 
nonstationary: an application to Mumbai rainfall datasets, 
[in:] Proceedings of HYDRO 2013 INTERNATIONAL,  
4-6 December 2013, Madras, India, 14 pp.

Sherly M.A., Karmakar S., Chan T., Rau C., 2015, Design 
rainfall framework using multivariate parametric-nonpara-
metric Approach, Journal of Hydrologic Engineering, 21 (1),  
DOI: 10.1061/(ASCE)HE.1943-5584.0001256

Singh J., Sekharan S., Karmarkar S., Ghosh S., Zope P.E.,  
Eldho T.I., 2017, Spatio-temporal analysis of sub-hourly 
rainfall over Mumbai, India: is statistical forecasting futile?, 
Journal of Earth System Science, 126 (38), DOI: 10.1007/
s12040-017-0817-z

Sinha P., Mohanty U.C., Kar S.C., Dash S.K., Robertson A.W., 
Tippett M.K., 2013, Seasonal prediction of the Indian 
summer monsoon rainfall using canonical correlation analy-
sis of the NCMRWF global model products, International 
Journal of Climatology, 33 (7), 1601-1614, DOI: 10.1002/
joc.3536

Smithers J.C., Schulze R.E., 2001, A methodology for the estima-
tion of short duration design storms in South Africa using 
a regional approach based on L-moments, Journal of Hydrol-
ogy, 241 (1-2), 42-52, DOI: 10.1016/S0022-1694(00)00374-7

Sun X., Lall U., Merz B., Nguyen V.D., 2015, Hierarchical 
Bayesian clustering for nonstationary flood frequency 
analysis: application to trends of annual maximum flow 
in Germany, Water Resources Research, 51 (8), 6586-6601, 
DOI: 10.1002/2015WR017117

Wallis J.R., Schaefer M.G., Barker B.L., Taylor G.H., 2007, 
Regional precipitation-frequency analysis and spatial map-
ping for 24-hour and 2-hour durations for Washington States, 
Hydrology and Earth System Sciences, 11 (1), 415-442,  
DOI: 10.5194/hess-11-415-2007

Wazneh H., Chebana F., Ouarda T.B.M.J., 2015, Delineation 
of homogeneous region for regional frequency analysis using 
statistical depth function, Journal of Hydrology, 521, 232-
244, DOI: 10.1016/j.hydrol.2014.11.068


