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Abstract 

The Cunge-Muskingum routing model is one of the most popular and widely used models for hydrologic channel flood routing. 

The application of Cunge-Muskingum model to an ungauged basin is hindered by the lack of hydro-meteorological data. In the 

present study, a method is proposed to predict the outflow hydrograph of an ungauged basin as a solution to this problem. The 

Cunge-Muskingum method is modified, considering the non-prismatic complex natural channel. The Soil Conservation Service 

Curve Number rainfall-runoff model is employed to obtain the inflow and lateral inflow hydrographs of the ungauged basins, 

and the Modified Cunge-Muskingum model is employed to anticipate the flood hydrograph at the outlet of the ungauged basin. 

The proposed approach is employed to the Kulsi River Basin, India, hypothetically treated as an ungauged basin, and the results 

are compared with the observed data at the outlet of the basin. The performance of the model is evaluated based on RMSE 

(50.34 m3/s), peak flow error (39.73%), peak flow time error (–3.44%), total volume error (7.36%), relative error (7.36%), mean 

absolute error (33.5%), correlation coefficient (0.785), coefficient of efficiency (0.59) and Kling-Gupta efficiency (0.66).The 

results reveal that the proposed Modified Cunge-Muskingum model is an efficient predictor of the flood hydrograph at the outlet 

of the ungauged basin. 
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1. Introduction 

Flood routing is a mechanism to ascertain the timing and magnitude of flow at a point on a watershed 

from known or assumed hydrographs at one or more points upstream (Fread 1981; Tewolde, Smithers 

2006). Hydraulic structures are constructed across the rivers to prevent flood damage. To ensure ample 

protection from floods and to obtain viable solutions to flooding, we required flood routing. Flood 

routing helps in designing a proper hydraulic structure for flood control (Barati 2010). Two main 

approaches, one based on hydrologic routing and the other based on hydraulic routing, are typically used 

to guide flood waves to natural channels. The hydrological method is based on the equation of storage 

continuity, while the hydraulic method is based on the equations of continuity and momentum consisting 

of the Saint-Venant equations (Choudhury et al. 2002; Barati 2010). The outflow hydrograph at the 

downstream location can be estimated using a flood routing model by routing a flood event from an 

upstream gauging station, but in developing countries, most of the basins are ungauged.  

Various simplified routing models were created in the 20th century. Most of these models have been 

successfully applied to rivers and reservoirs (Hashmi 1993). Due to the adequacy and reliable relationship 
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between their parameters and channel properties, the Muskingum method (McCarthy 1938) and the 

Muskingum-Cunge method (Cunge 1969) are widely adopted and used in flood routing models (Fread 

1983; Haktanir, Ozmen 1997). The Muskingum model investigates a method of parameter estimation to 

determine the weight coefficient X and wave travel time K. Yoo et al. (2017) proposed a methodology to 

determine the Muskingum parameters, using the basin characteristics which represents the inlet and outlet 

of the channel reach. Most of the methods are optimization techniques, including trial and error, 

recession analysis (Yoon, Padmanabhan 1993), least-squares (Al-Humoud, Esen 2006), feasible sequential 

quadratic programming (Kshirsagar et al. 1995), chance-constrained optimization (Das 2004, 2007), 

genetic algorithm (Chen, Yang 2007), particle swarm optimization (Chu, Chang 2009), harmony search 

(Kim et al. 2001), Broyden-Fletcher-Goldfarb-Shanno technique (Geem 2006), immune clonal selection 

algorithm (Luo, Xie 2010), and hybrid algorithm (Lu et al. 2007; Yang, Li 2008). However, because they 

need large amounts of observed data, these studies and methods are more applicable to flood routing in 

gauged basins.  

It is difficult to predict flow characteristics in ungauged basins (Sivapalan et al. 2003), because streamflow 

time series are usually not long enough for parameter calibration. Two common ways to address this 

problem are: (a) the use of physically-based models, and (b) regionalization of model parameters 

according to the physical characteristics of basins (Yadav et al. 2007). To improve the prediction accuracy 

of streamflow in an ungauged basin, several regionalization models have been developed, including 

parametric regression, the nearest neighbor method, and the method of hydrological similarity (Li et al. 

2010). Physically-based models are strongly linked to the basin's observed physical characteristics. Many 

physically based distributed hydrological models have been created and used in ungauged basins to 

simulate and predict runoff hydrographs. However, differences in scale, over-parameterization, and 

model structural error remain impediments, and some calibration criteria are generally required. Bharali 

and Misra (2020a-b, 2021) proposed hydraulic routing methods to estimate the flood hydrograph at the 

outlet of the ungauged basin. For flood routing models used in ungauged basins, the relationships 

between physical characteristics and model parameters of gauged basins are useful (Tewolde, Smithers 

2006). Consequently, the modification and interpretation of the Muskingum model's parameters in terms 

of physical properties extends the model's applicability to ungauged basins, as observed by Kundzewicz 

and Strupczewski (1982). 

The Muskingum method is one of the most popular and commonly used hydrologic methods for flood 

routing. McCarthy introduced it in 1938 for management of the Muskingum River basin in Ohio by the 

Army Corps of Engineers (Chow 1959; Henderson 1966; Roberson et al. 1988; Li et al. 2019). The 

original formulation of the method was strictly empirical, with two coefficients that worked together to 

control translation and attenuation. Initially, it was recognized that one of the coefficients, often referred 

to as X, was associated with the weight factor, which had the most significant impact on attenuation, 

whereas the second coefficient, often referred to as K, was related to the time of travel or the translation 



of the wave through the channel. The X coefficient was limited to the range 0 to 0.5, and to estimate it 

from calibration data, graphical techniques were developed (Roberson et al. 1988; Fenton 2019). 

Long-term discharge observations are usually not available at the appropriate location, and, for various 

reasons, these records often contain missing data. As a result, many hydrological models have been 

developed to obtain runoff from rainfall due to the easy availability of rainfall data for longer periods at 

various locations (Singh, McCann 1980; Singh, Frevert 2005). The Soil Conservation Service Curve 

Number (SCS-CN) model has been widely used to calculate surface runoff. A theoretical framework for 

validating the SCS method has been provided (Yu 1998). Yu (2012) showed that the proportionality in the 

SCS equation would follow retention and runoff if the temporal distribution of rainfall intensity and 

spatial distribution of the highest infiltration rate were independent and illustrated by an exponential 

probability distribution. In particular, 'Yu' demonstrated that the highest retention S could be seen as the 

product of the highest average infiltration rate and effective rainfall duration. Changes were made to the 

original SCS-CN method by replacing (P – Ia) with 0.5*(P – Ia) (Mishra, Singh 1999). They made 

comparisons between the current SCS-CN system and the proposed modification, and the new version 

was found to be more reliable than the existing version. The flood prediction was carried out using the 

curve number method in the geographical information system (GIS) at the North Karun River field 

(Akhondi 2001).  

The current SCS-CN method was modified and named the MS model by Mishra et al. (2004); the 

proposed model was based on the SCS-CN method and also incorporated the antecedent moisture while 

calculating the direct surface runoff. The modified version was evaluated and compared with the existing 

SCS-CN method, with the observation that the modified MS model's performance was much better than 

the existing SCS-CN model. In 2005, by considering a large set of rainfall-run-off events, they used the 

MS model with its eight variants in the field and revealed that the performance of the current version of 

the SCS-CN method was remarkably poor compared to all model variants. To increase the applicability of 

the model for complex watersheds with high temporal and spatial variability of soil and land use, some 

researchers have incorporated the SCS-CN model into the GIS/RS system (Zhan, Huang 2004; Geetha et 

al. 2007). Many researchers have used the GIS technique to determine curve numbers and quantities of 

runoff in different world regions. Using the SCS-CN based unit hydrograph method, Reshma et al. (2010) 

proposed a hydrological model to simulate runoff from the sub-watershed. They also developed another 

hydrological model using the Muskingum-Cunge technique to route the runoff from sub-watersheds to 

the outlet of watersheds. Few mechanisms are used to estimate the spatial differences in hydrological 

parameters, namely remote sensing and GIS techniques, and it has been found that the developed model 

has correctly simulated runoff hydrographs at the outlet of the watershed. Zlatanovic and Gavric (2013) 

computed the morphometric properties for each catchment, first using the topographical map manually, 

and then automatically using pre-processed DEM based on SRTM data and scripting capabilities of GIS. 

The conversion of excess rainfall into direct runoff was triggered using a modified SCS dimensionless unit 



hydrograph, and the flow rates obtained by the automated method proved to be slightly higher than that 

obtained manually. 

Xiao et al. (2011) studied the applicability of the SCS-CN model to a small watershed with high spatial 

variability on the Loess Plateau, China. By using the inverse method, they scaled the most suitable Ia/S 

values. A modification was made to the value of Ia/S to ensure that the model yielded the best 

performance; this ratio was traditionally set at 0.2. This value of the initial abstraction ratio was eventually 

assumed for the runoff estimate. They found that when Ia/S was between 0.15 and 0.30, the relative error 

was almost constant, but when it was less than 0.15, the relative error rapidly decreased with the increase 

in Ia/S. Gupta et al. (2012) changed the SCS-CN method to correct it for steep slopes to overcome the 

slope limitations of the SCS-CN method. Antecedent moisture has been included using the Mishra. et al. 

(2005) approach. There should also be two essential components in a hydrological model of runoff 

modeling, namely, runoff generation and runoff routing. The SCS-CN is a static model and does not take 

account of the runoff routing phase. Gupta et al. (2012) used a hybrid technique that combined a 

modified version of SCS-CN with a physically distributed two-dimensional (2D) overland flow model to 

extend SCS-CN to account for the runoff routing stage. 

Soulis and Valiantzas (2012) proposed two CN systems by considering a theoretical analysis of SCS-CN. 

Based on a systematic investigation using synthetic data, and a detailed case study, they conclude that the 

correlation between the calculated CN values and the depth of rainfall in a watershed can be attributed to 

the watershed's land cover and soil's spatial variability. Therefore, the two proposed CN systems can 

adequately describe the changes in CN rainfall observed in natural watersheds. Assumptions of 

proportionality of the SCS method have been examined to validate the foundation of the method (Yu 

2012). It was found that the product of effective storm duration and maximum infiltration rate is a good 

predictor of maximum retention parameters in SCS. This interpretation provides an effective method for 

determining the extent of storm runoff, which predicts runoff volume and peak runoff. In order to 

quantitatively study and forecast the runoff outcome caused by precipitation, Panahi (2013) performed a 

scientific evaluation analysis and proposed a model for estimating runoff and obtaining potential sites of 

study area runoff production using experimental methods. For precision and effectiveness, an 

experimental version of SCS-CN was used. The potential of the region's runoff production was 

determined through the preparation of the CN. 

In the present study, the Cunge-Muskingum method is modified, considering both temporal and spatial 

variation, to predict the outflow hydrograph at the outlet of an ungauged basin. In the modified Cunge-

Muskingum method, lateral inflows are considered. The inflow and the lateral inflows are obtained using 

the SCS-CN rainfall-runoff model. The proposed Modified Cunge-Muskingum method is employed in 

the Kulsi River Basin, northeast India, and the results obtained are compared with the observed data. 

2. Study area and database 



2.1. Study area 

In this study, the Kulsi River Basin, a part of the Brahmaputra sub-basin, was selected and was treated as 

a hypothetically ungauged basin. A total area of 2822.99 km2 drains through the Kulsi River Basin, 

covering the Kamrup District of Assam, the Western Khasi Hills, and the Ri Bhoi district of Meghalaya in 

northeast India. Because of its strategic location (encompassing two states in northeast India) and the fact 

that the region experiences large floods, the basin is an ideal target for flood routing. The study area is 

situated on the south bank of the mighty Brahmaputra River. It is located at latitudes 25°30'N to 26°10'N 

and longitudes 89°50'E to 91°50'E (Fig. 1).  

 

Fig. 1. Location of Kulsi River Watershed. 

2.2. Data 

Daily rainfall data for 2010 were collected from the Indian Metrological Department (IMD), Guwahati. 

Daily discharge data for 2010 at the basin outlet were collected from the National Institute of Hydrology, 

Guwahati. Digital elevation models (DEM) are being widely used for watershed delineation, extraction of 

stream networks, and characterization of watershed topography (elevation map, slope map, and aspect 

map) by using a watershed delineation tool in ArcGIS software. The DEM used in this project was 

collected from CartoSat 1_V3_R1. CartoDEM version_3R1 is a national DEM developed by the Indian 

Space Research Organization (ISRO) with the accuracy of 3.6-4 m (RMSE). CartoDEM version_3R1 has 

resolution of 30.87 m × 30.87 m (or 1 arc sec). For the delineation of the Kulsi River Watershed, the 

GeotiffCartoDEMs are ng46g, ng46h, ng46m, and ng46n. In this study, soil data were obtained from the 

Harmonized World Soil Database v 1.2 of the Food and Agriculture Organization (FAO) soil portal. The 

Kulsi River Watershed soil texture consists of clay loam, loam, and sandy loam. The study area's soils are 

categorized into four hydrological classifications (A, B, C, and D) depending on the infiltration rate and 

other traits. The important soil features affecting the hydrological classification of soils are effective depth 



of soil, average clay content, infiltration rate, and the soil's absorbing capacity. Group A is low runoff 

potential, Group B is moderately low runoff potential, Group C is moderately high runoff potential, and 

Group D is high runoff potential. 

2.3. Land Use and Land Cover (LULC) 

The LULC for the Kulsi River Watershed was developed by Maximum Likelihood Supervised Image 

Classification as per the required class sample using ArcGIS 10.1 software. A Linear Imaging Self 

Scanning Sensor (LISS)-III Satellite image is used in this project to perform supervised image 

classification. The LISS-III image operates in three spectral bands in Visible and Near Infrared (VNIR) 

and one band in Short Wave Infrared (SWIR) with 23.5 m spatial resolution and a swath of 141 km. The 

LISS-III image was downloaded from Bhuvan. 

2.4. Sub-Basins of Kulsi River Basin 

Eight lateral inflows have been identified as contributing to the mainstem Kulsi River. Sub-basins for 

lateral inflows are delineated using ArcGIS 10.1, and the details of each sub-basin are presented in Table 

1.  

2.5. Rainfall data distribution 

Rainfall distribution over the study area was estimated by the interpolation method using ArcGIS 

software. Inverse Distance Weighted (IDW), Kriging, and Spline are the three general methods available 

in Arc GIS 10.1 for interpolation. In this study, the IDW method was used for rainfall interpolation as 

IDW is the best for the point data format. 

The field rainfall data is collected from seven numbered rain gauge stations around the Kulsi Watershed. 

In 2010, the month of June experienced a maximum amount of rainfall. For this study, daily rainfall for 

the month of June 2010 is distributed over the study area using IDW using ArcGIS 10.1. The minimum 

and maximum daily rainfall data for the month of June are presented in Figure 2.  

 

Fig. 2. Rainfall Data over Kulsi River Watershed. 

3. Methodology 

3.1. SCS-CN method 

In this study, SCS-CN is used as a rainfall-runoff model to obtain an inflow hydrograph upstream of the 



ungauged basin. This method is a simple, predictable, and stable conceptual technique for estimating 

direct runoff depth based on storm precipitation depth. It relies on only one parameter, the Curve 

Number (CN). Currently, it is a well-established method, having been widely accepted for use in India 

and many other countries.  

The SCS-CN method is based on the water balance equation and two fundamental hypotheses. The first 

hypothesis is that the ratio of the amount of direct surface runoff Q to the total precipitation P (or 

maximum potential surface runoff) is equal to the ratio of the amount of infiltration Fc to the amount of 

the maximum potential retention S. The second hypothesis is that the initial abstraction Ia is some 

fraction of the maximum potential retention ‘S’ (Subramanya 2008). 

Water balance equation: 

P = Ia + Fc + Q (1) 

Proportional equality hypothesis: 

𝑄

(𝑃−𝐼𝑎)
=

𝐹𝑐

𝑆
 (2) 

Ia is some fraction of the potential maximum retention (S):  

Ia = λS (3) 

where: P is the total precipitation; Ia the initial abstraction; Fc the cumulative infiltration excluding Ia; Q 

the direct surface runoff; S the potential maximum retention or infiltration, and λ the regional parameter 

dependent on geological and climatic factors (0.1 < λ < 0.3). 

Solving Equation (2): 

𝑄 = 
(𝑃− 𝑙𝑎)2

𝑃−𝑙𝑎 + 𝑆
  if P > Ia, otherwise Q = 0 (4) 

𝑄 =
(𝑃−λ𝑆)2

𝑃− (λ−1) 𝑆
 (5) 

By analyzing the rainfall and runoff data from small experimental watersheds, the relationship between Ia 

and S was established and expressed as Ia = 0.2S. Combining the water balance equation and 

proportional equality hypothesis; the SCS-CN method is represented as: 

𝑄 =
(𝑃 − 0.2𝑆)2

𝑃 + 0.8𝑆
 (6) 

A Curve Number (CN), which is a function of land use, land treatments, soil type, and antecedent 



moisture condition of the watershed, is correlated with the potential maximum retention storage S of the 

watershed. The Curve Number is dimensionless and ranges from 0 to 100 in magnitude. Using equation 

(7), the S-value can be obtained from CN in mm. 

𝑆 =
25400

𝐶𝑁
− 254 (7) 

3.1.1. Curve Number (CN) 

The hydrological classification is adopted in the determination of CN. Based on the infiltration and other 

characteristics, soils are classified into classes A, B, C, and D in order of increasing runoff potential. 

Effective soil depth, average clay content, infiltration characteristics, and permeability are the important 

soil characteristics which influence the hydrological classification of soils. In this study, the variation of 

curve number for various land conditions and for different hydrological classification is obtained from 

Chow et al. (1988). 

3.2. Modified Cunge-Muskingum method 

Cunge (1969) proposed the Cunge-Muskingum method based on the Muskingum method, a method 

traditionally applied to linear hydrologic storage routing. Referring to the time-space computational grid 

shown in Figure 3, the Muskingum routing equation is modified and written as equation (8), for the 

discharge at x = (i + 1)∆x and t = (j + 1)∆t:  

𝑄𝑖+1
𝑗+1

 = C0𝑄𝑖
𝑗+1

 + C1𝑄𝑖
𝑗
 + C2𝑄𝑖+1

𝑗
 (8) 

Where C0, C1, and C2 are the routing coefficients.  

C0 = (∆t + 2KX)/m (9) 

C1 = (∆t – 2KX)/m (10) 

C2 = [2K(1 – X) – ∆t]/m (11) 

where m = [2K(1 – X) + ∆t] (12) 



 
Fig. 3. Time-Space computational grid for the proposed model. 

In equation (9) through (11), K is a storage constant having dimensions of time and X is a factor 

expressing the relative influence of inflow on storage levels. Equation 8 gives an approximate solution of 

a modified diffusion equation: 

K = 
∆𝑥

𝑐𝑘
=  

∆𝑥

𝑑𝑄/𝑑𝐴
 (13) 

X = 
1

2
1 − (

𝑄

𝐵𝑐𝑘𝑆0∆𝑥
) (14) 

Where ck is the celerity of wave corresponding to Q and B, and B is the top width of the surface water. 

Cunge (1969) showed that for numerical stability, it is required that 0 ≤ X ≤ 1/2. Figure 4 shows the 

procedure for the modified Cunge-Muskingum method adopted in the present study. 

 
Fig. 4. Flowchart for the Modified Cunge-Muskingum method. 

4. Results and discussion 



4.1. SCS-CN Rainfall-Runoff Model in the Kulsi River Basin 

Flood routing is a process to determine the outflow hydrograph at a point on a watercourse from the 

known inflow hydrograph at the upstream gauged station. The flood routing process is difficult in 

ungauged basins due to a lack of data. In this study, the SCS-CN model is used to obtain the inflow 

hydrograph at the upstream section (Ukiam Dam Site). Similarly, the lateral inflows of the eight sub-

basins contributing to the Kulsi River are also obtained by SCS-CN. The runoff discharge hydrograph for 

each sub-basin is presented in Figure 5. The figure shows that the peak runoff discharge for each sub-

basin occurred on 28 June, 2010. Sub-basin C shows a maximum peak discharge of 95.35 m3/s, whereas 

sub-basin H shows a minimum peak discharge of 4.31 m3/s. It is also observed that all the lateral inflow 

hydrographs follow the same trend. 

 

Fig. 5. Inflow hydrographs of Kulsi River Sub-basins. 

4.2. Criteria for evaluation of model performance 

The following criteria were used to evaluate the performance of the model: 

1). In order to compare the proposed model output to the data observed, the criteria for making such a 

comparison must first be identified (Green, Stephenson 1985). In the present study, the difference 

between the observed and the computed hydrograph was analyzed by root-mean-square error (RMSE). 

The RMSE evaluates the magnitude of the error in the computed hydrographs (O'Donnell 1985; Schulze 

et al. 1995) and is given by: 

𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑐𝑜𝑚𝑝 − 𝑄𝑜𝑏𝑠)
2𝑛

𝑖=1

𝑛
, i = 1, 2, 3, …, n (15) 

In this equation, Qcomp represents the computed outflow, and Qobs represents the observed outflow. 

2). The criterion for the difference between computed and observed peak discharge (Epeak) (Green, 

Stephenson 1985) is given by: 

Epeak = 
𝑄𝑝,𝑐𝑜𝑚𝑝− 𝑄𝑝,𝑜𝑏𝑠

𝑄𝑝,𝑜𝑏𝑠
 · 100 (16) 



The above equation shows the percentage of error in the peak discharge. In the present study, the peak 

flood discharge at the outlet of the basin obtained from the computed flood hydrograph was compared 

with the observed flood hydrograph. In equation 16, Qp,comp is the computed peak flows in m3/s, and 

Qp,obs is the observed peak flows in m3/s. 

3). The criterion for the difference between computed and observed peak discharge time (Etime) is given 
by: 

Etime = 
𝑡𝑝,𝑐𝑜𝑚𝑝− 𝑡𝑝,𝑜𝑏𝑠

𝑡𝑝,𝑜𝑏𝑠
 · 100 (17) 

The above equation shows the percentage of error in peak discharge time. In the present study, the peak 

flow time for the computed and observed flood hydrograph was compared. In the above-mentioned 

equation, tp,comp is the time taken by the computed hydrograph to reach the peak flow in hours, and Qp,obs 

is the time taken by the observed hydrograph to reach the peak flow in hours. 

4). The criterion for the difference between the computed and observed total volume (Evolume) is given by: 

Evolume = 
𝑉𝑐𝑜𝑚𝑝− 𝑉𝑜𝑏𝑠

𝑉𝑜𝑏𝑠
 · 100 (18) 

The above equation shows the percentage of error in the total volume of the computed hydrograph. In 

the present study, the total volume was compared for computed and observed flood hydrographs. In the 

above-mentioned equation, Vcomp is the total volume of the computed hydrograph in m3 and Vobs is the 

total volume of the observed hydrograph in m3. 

5). Relative error (RE) is given by: 

𝑅𝐸 =
⎸𝑄𝑜−𝑄𝑝 ⎸

𝑄𝑜
 · 100% (19) 

The above equation shows the relative error in percentage. In the above-mentioned equation, Qo is the 

observed data at the time t and Qp is the predicted value at the time t. The relative error is used to 

determine the percentage of samples belonging to one of the three groups (Corzo, Solomatine 2007): 

− RE ≤ 15%  low relative error 

− 15% < RE ≤35% medium error 

− RE > 35%   high error 

6). Mean absolute error (MAE) (Cheng et al. 2017) is given by: 

𝑀𝐴𝐸 =
1

𝑛
∑ ⎸𝑄𝑜 − 𝑄𝑝 ⎸ 𝑛

𝑖=1  (20) 

In the above-mentioned equation n is the number of samples, Qo is the observed data at the time t, and 

Qp is the predicted value at the time t. 



7). Correlation coefficient (r) is given by: 

𝑟 =
∑ (𝑄𝑜−𝑄𝑚)(𝑄𝑝−𝑄𝑚𝑝)𝑛

𝑖=1

√∑ (𝑄𝑜−𝑄𝑚)2𝑛
𝑖=1 √∑ (𝑄𝑝−𝑄𝑚𝑝)2𝑛

𝑖=1

 (21) 

In the above-mentioned equation n is the number of samples, Qo is the observed discharge at the time t, 

Qp is the predicted discharge at the time t, Qmp is the mean of predicted discharge, and Qm is the mean of 

observed discharge. 

8). Coefficient of efficiency (CE) (Nash, Sutcliffe 1970) is given by: 

𝐶𝐸 = 1 − [
∑ (𝑄𝑜−𝑄𝑝)2𝑛

𝑖=1

∑ (𝑄𝑜−𝑄𝑚)2𝑛
𝑖=1

] (22) 

In the above-mentioned equation n is the number of samples, Qo is the observed data at the time t and 

Qp is the predicted value at the time t, and Qm is the mean of observed discharge. Moriasi et al. (2007) 

recommended the following model performance ratings: 

− CE ≤ 0.50  unsatisfactory 

− 0.50 < CE ≤ 0.65 satisfactory 

− 0.65< CE ≤ 0.75 good 

− 0.75 < CE ≤ 1 very good 

9). Kling-Gupta efficiency (KGE ). 

Gupta et al. (2009) developed this goodness-of-fit measure to provide a diagnostically interesting 

decomposition of the efficiency of Nash-Sutcliffe efficiency, which facilitates the analysis of the relative 

importance of its various components. In the context of the hydrological modelling Kling et al. (2012), 

proposed a revised version of this index to ensure that the bias and variability ratios are not cross-

correlated. 

𝐾𝐺𝐸 = 1 − [√(𝐶𝐶 − 1)2 + (
𝑐𝑑

𝑟𝑑
− 1)2 + (

𝑐𝑚

𝑟𝑚
− 1)2 ] (23) 

where: CC is the Pearson correlation coefficient; rm is the average of observed values; cm is the average 

of predicted values; rd is the standard deviation of observation values; and cd is the standard deviation of 

predicted values. Rogelis et al. (2016) consider model performance to be ‘poor’ for 0.5 > KGE > 0. 

Schönfelder et al. (2017) consider negative KGE values as 'not satisfactory.' 

4.3. Application of the Modified Cunge-Muskingum method in the Kulsi River Basin 

The method was coded in MATLAB software and the Cunge-Muskingum parameters K and X were 

determined. The computed outflow hydrograph using the proposed model and the observed data 



(hydrograph) collected from the National Institute of Hydrology (NIH), Guwahati, are presented in 

Figure 6. From the figure, it can be seen that the shape of the computed outflow hydrograph is very 

much similar to that of the observed data at the outlet of the Kulsi River Basin. 

The quantitative comparison of the proposed model with the observed data is presented in Table 2. From 

the table, the computed peak outflow was on the 28th day, 24 hr prior to the observed peak outflow. The 

computed peak outflow discharge was greater than the observed outflow discharge. The computed peak 

discharge was 370.53 m3/s, whereas the observed peak discharge was 265.17 m3/s. The performance of 

the model is evaluated by nine different criteria, with results presented in Table 2. 

 

Fig. 6. Comparison graph of the observed outflow and the calculated outflow at the Kulsi River outlet for the 

Cunge-Muskingum method. 

Table 1. Details of the sub-basins of the study area. 

Parameters 
Sub-Basin 
I 

Sub-Basin 
H 

Sub-Basin 
G 

Sub-Basin 
F 

Sub-Basin 
E 

Sub-Basin 
D 

Sub-Basin 
C 

Sub-Basin 
B 

Sub-Basin 
A 

Area [km2] 1180.3 8.97 63.15 385.57 274.25 101.24 485.67 26.77 30.43 

Agricultural 
area [km2] 

6.63 8.63 49.03 37.33 43.3 13.01 112 3.34 1.16 

Open space 
area [km2] 

0.12 0.07 0.83 14.26 10.36 2.36 56.79 0.05 0.73 

Open forest 
area [km2] 

93.7 -- 0.52 34.88 42.11 18.81 48.70 7.21 3.08 

Dense forest 
area [km2] 

1076.78 -- 0.006 272 135.72 49.48 200.92 14.19 24.62 

Residential area 
[km2] 

3.12 0.25 12.76 27.1 42.76 17.57 67.21 1.97 0.81 

Hydrological 
Classification 

A, D B B A, B, D A, B, D B, D A, B, D B, D D 

Curve Number 
(CN) 

52.3 80.6 78.8 57.9 62.1 72.5 63.8 71.8 78.5 

4.4. Sensitivity analyses 

The significance of sensitivity studies in modelling is generally acknowledged. Sensitivity analyses allow 

for the evaluation of the consequences of input errors, and the sensitivity of model parameters relative to 

other parameters allows for an understanding of the significance of the corresponding inputs (Akbari, 

Barati 2012). 

The Kulsi River Basin was selected to test the sensitivity of the input variables on the output of the 

proposed model. For this purpose, the upstream hydrograph must be developed for the upstream 



boundary condition. Figure 7 shows the upstream hydrograph generated in this study using SCS-CN. The 

sensitivity of the proposed model was determined by varying individual input parameters such as river 

length, roughness coefficient, bed slope, inflow peak discharge, channel width, and then evaluating the 

effects on outflow peak discharge, time to peak, velocity, depth corresponding to peak discharge, and 

volume of the hydrograph. 

 

Fig. 7. Upstream hydrographs for Kulsi River used in sensitivity analysis. 

Sensitivity analysis requires basic values for the parameters, which are then adjusted within a given range; 

the model variance is evaluated for each set of parameter values. Table 3 shows the range of parameter 

variations based on the features of the Kulsi River and the uncertainty of the model's input parameters. 

The Sensitivity Index SI (percent) is used for a comprehensive analysis of the impact of changing input 

parameters on output outcomes in an ungauged basin. 

𝑆𝐼 =

(𝑂2−𝑂1)
(𝑂2+𝑂1)⁄

(𝐼2−𝐼1)
(𝐼2+𝐼1)⁄

 · 100, (Akbari, Barati 2012) (24) 

Where I1 and I2 are the smallest and largest values of input parameters, and O1 and O2 are output values 

corresponding to I1 and I2, respectively. SI is used to compare parameter sensitivities. A negative SI 

indicates an inverse relationship between input and output parameters (i.e., the output value of the model 

decreases as the input value increases) (Akbari, Barati 2012). The results of the performance of varied 

input parameters are presented in Table.4. The SI values for the proposed model were evaluated based on 

changing one input parameter and evaluating the effect on the selected output result (Table 5). The 

effects of variations in river length L, roughness n, and bed slope S0 on the output hydrographs are 

illustrated in Figures 8 to 10, respectively. The figures indicate that river length is the most influential 

parameter with regard to the shape of the output hydrograph. 

Table 2. Comparison of the performance of the proposed model with the observed data at the outlet of the Kulsi 

River Basin. 

Evaluation Criteria Units 
Modified Cunge 
Muskingum 
method 

Remarks 



Root Mean Square Error 

(RMSE) 
m3/s 50.34 -- 

Peak Flow Error (Epeak) % 39.73 -- 

Peak Flow Time Error (Etime) % -3.44 -- 

Total Volume Error (Evolume) % 7.36 -- 

Relative Error (RE) % 33.5 Medium error 

Mean Absolute Error (MAE) -- 31.57 -- 

Correlation coefficient (r) -- 0.785 -- 

Coefficient of efficiency (CE) -- 0.59 Satisfactory 

Kling-Gupta efficiency (KGE) -- 0.66 Not poor 

Table 3. Values of parameters for sensitivity analysis of the Modified Cunge-Muskingum method. 

Parameters 
Peak flow 
[m3/s] 

Length 
[km] 

Roughness 
[S/m.^(1/3)] 

Bed Slope 
[m/km] 

Lower bound 48.44 5 0.03 2 

Base Value 84.74 15 0.035 3 

Upper bound 95.35 30 0.04 5 

Table 4. Performance of the different input parameters. 

Parameter Bound 
Time to 
Peak [h] 

Peak 
Outflow 
[m3/s] 

Velocity 
[m/s] 

Depth 
[m] 

Volume 
[cubic meter] 

Roughness 
Coefficient 

Lower 672 76.02 0.22 5.10 1765.90 

Base 672 75.47 0.20 5.66 1684.20 

Upper 672 75.17 0.18 6.21 1608.90 

Bed Slope 

Lower 672 76.42 0.24 4.75 1811.10 

Base 672 76.66 0.25 4.58 1816.40 

Upper 671 77.60 0.29 3.98 1825.10 

Peak flow 

Lower 672 42.13 0.14 4.46 1012.70 

Base 672 76.02 0.19 5.08 1765.90 

Upper 672 88.09 0.22 5.78 2937.30 

River Length 

Lower 671 79.18 0.23 5.17 1992.30 

Base 672 76.02 0.22 5.09 1989.90 

Upper 673 70.68 0.22 5.07 1980.90 

Table 5. Values of sensitivity index [%]. 

  
Peak 
Inflow 

Roughness 
Coefficient 

Bed 
Slope 

River 
Length 

Peak outflow 108.18 –3.94 1.78 –7.94 

Time of Peak 0.00 0.00 –0.17 0.21 

Volume 149.35 –32.56 0.90 –0.40 

Depth 39.54 68.70 –20.77 –1.34 

Velocity 71.76 –73.36 22.56 –1.86 

Table 6. Sensitivity rankings of the inputs to the MDWMP: P, peak inflow; n, roughness coefficient; L, river length; 

S, bed slope. 

Order of 
importance 

Peak 
outflow 

Time to 
peak 

Volume Depth Velocity 
All 
parameters 



1 P L P n n P 

2 L n n P P n 

3 n  -- S S S S 

4 S  -- L L L L 

 

 

Fig. 8. Effect of variation in river length on outflow hydrograph. 

 

Fig. 9. Effect of variation of roughness on outflow hydrograph. 

 

Fig. 10. Effect of variation of bed slope on outflow hydrograph. 

4.4.1. Discussion of results 

Sensitivity index 

Based on the Modified Cunge-Muskingum method sensitivity assessments, this section highlights the 

relevant input parameters for each of the output outcomes. Table 6 shows the result of the parameter 

importance rankings. 



According to the SI findings for peak outflow, the following parameters are ranked in order of 

importance: peak inflow, river length, roughness coefficient, and bed slope. Although the SI of the peak 

outflow is modest for bed slope, it is substantial for the other parameters. According to the sensitivity 

index, the peak discharge has an inverse connection with the roughness coefficient and river length. 

The SI results for the period of peak show that river length and bed slope are the most important 

parameters. For peak inflow and roughness coefficient, however, the SI of the peak time is insignificant. 

In contrast to the bed slope, the river length has a direct relationship with the time of the peak. The SI 

results show that peak input, roughness coefficient, bed slope, and river length are the most important 

parameters for flood volume. In contrast to the roughness coefficient and river length, the peak inflow 

and bed slope have a direct connection with volume. The SI results show that the roughness coefficient, 

peak inflow, bed slope, and river length are the most important parameters for the depth corresponding 

to the peak discharge. The peak inflow and roughness coefficient, unlike the other parameters, have a 

direct connection with depth. The SI findings for the velocity corresponding to the peak discharge show 

that the following parameters are ranked in order of importance: roughness coefficient, peak inflow, bed 

slope, and river length. Peak inflow and bed slope were shown to have a direct connection with velocity, 

but roughness coefficient and river length had an inverse association with velocity. 

If all output parameters are considered at the same time, the rankings of parameters important for the 

absolute SI mean are peak inflow (73.76%), roughness coefficient (35.71%), bed slope (9.24%), and river 

length (2.34%). The strongest effects of the input parameter related to flood characteristics (i.e., peak 

inflow) are on the volume of the floods and peak outflow, and the strongest effects of the input 

parameter related to bed surface (i.e., bed slope) are on the velocity and depth, according to the analysis 

of the SI values. The peak outflow, velocity, and depth are the most affected by the input parameters 

relating to river geometry (i.e. river length). 

Effect of grid size 

Numerical tests are used to examine the impacts of grid size (i.e., space and time steps) on the output 

results in terms of the dimensionless peak discharge. The impacts of changing time and spatial steps on 

the proposed model's performance were explored in these experiments. This method was carried out 

using the inflow hydrograph at the Kulsi River's entrance. Figures 11 and 12 show variations in the peak 

of the outflow hydrograph ordinate Qpo, which was dimensionless, and the peak of the inflow hydrograph 

ordinate Qpi with variations in space and time steps. 



 

Fig. 11. Effect of variation in space step on dimensionless peak discharge. 

 

Fig. 12. Effect of variation in time step on dimensionless peak discharge. 

Both the space step and the time step with the peak discharge were found to have a linear connection 

with a high correlation coefficient. Based on the numerical data, it can be said that differences in time step 

have only a little influence on peak discharge and have no effect on time to peak. The effects of changes 

in the space step on the peak discharge are more substantial than the impacts of variations in the time 

step. 

5. Conclusion 

In the present study, the inflow hydrograph and lateral inflow hydrographs of the Kulsi River Basin are 

obtained using the SCS-CN rainfall-runoff model. The modified Cunge-Muskingum model is employed 

to anticipate the outflow hydrograph at the outlet of the Kulsi River Basin. One of the advantages of the 

proposed approach is that the outflow hydrograph is obtained through a linear algebraic equation instead 

of a finite difference scheme or characteristic approximation. This allows the entire hydrograph to be 

obtained at the required cross-section, whereas in the other models, requiring a solution over the entire 

length of the channel for each time step. The modified Cunge-Muskingum method allows more flexibility 

to choose time and space increments for the computations. The results obtained by using the proposed 

model shows good agreement between the computed and observed outflow hydrograph at the outlet of 

the Kulsi River Basin. The performance of the model is also assessed considering nine statistical 

parameters namely RMSE (50.34 m3/s), peak flow error (39.73%), peak flow time error (–3.44%), total 

volume error (7.36%), relative error (7.36%), mean absolute error (33.5%), correlation coefficient (0.785), 



Coefficient of efficiency (0.59) and Kling-Gupta efficiency (0.66). Based on the performance of the 

proposed model, it is concluded that the model can be efficiently used to predict the outflow hydrograph 

in an ungauged basin. A sensitivity analysis of the proposed model was performed to understand the 

reliability of the computed outputs in order to make effective decisions when developing a model to 

simulate the natural process. This study demonstrated that in the selection of input parameters, 

parameters with a high sensitivity index (SI) must be identified. The impact of grid size on output 

outcomes has also been studied. The results demonstrate that differences in space step have a greater 

influence on peak discharge than variations in time step. Some of the improvements which can be 

incorporated in the proposed model are summarized below. 

1). In the present study an established mathematical equation is used for estimating the Muskingum 

Coefficient. Linear programming, genetic algorithms, fuzzy inference system, radial basis function, and 

other advanced neurocomputing techniques can be explored to improve the performance of the 

proposed model. 

2). The present study employed rainfall of June 2010. More rainfall events may be analyzed as and when 

sufficient data become available to make the forecasting more robust and reliable. 

3). The proposed model can be improved by using the modified SCS-CN method as a rainfall-runoff 

model. 
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