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Abstract. there are numerous algorithmic classification methods that attempt to address the connections between 
different scales of the atmosphere, such as eOFs, clustering, and neural nets. however, their relative strength lies in 
the description of the mean conditions, whereas extremes are poorly covered by them.
a novel approach towards the identification of linkages between large-scale atmospheric fields and local extremes 
of meteorological parameters is presented in this paper. the principle is that a small number of objectively selected 
fields can be used to circumscribe a local meteorological parameter by way of regression. For each day, the regression 
coefficients form a kind of pattern which is used for a classification based on similarity. as it turns out, several classes 
are generated which contain days that constitute extreme atmospheric conditions and from which local meteorologi-
cal parameters can be computed, yielding an indirect way of determining these local extremes just from large-scale 
information.
 the range of applications is large. (i) not only local meteorological parameters can be subjected to such a regression-
based classification procedure. it can be extended to extreme indicators, such as threshold exceedances, yielding on 
the one hand the relevant atmospheric fields to describe those indicators, and on the other hand grouping days with 
“favourable atmospheric conditions”. this approach can be further extended by investigating networks of measure-
ment stations from a region and describing, e.g., the probability for threshold exceedances at a given percentage of 
the network. (ii) the method can not only be used as a filtering tool to supply days in the current climate with extreme 
conditions, identified in an objective way. the method can be applied to climate model projections, using the previ-
ously found parameter-specific combinations of atmospheric fields. From those fields, as they constitute the modelled 
future climate, local time series can be generated which are then analysed with respect to the frequency and magnitude 
of future extremes.
the method has sensitivities (i) due to the degree to which there are connections between large-scale fields and local 
meteorological parameters (measured, e.g., by the correlation) and (ii) due to the varying quality of the different fields 
(geopotential, temperature, humidity etc.) projected by the climate model.
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1. Introduction

climate change and meteorological extremes in par-
ticular pose considerable risks for humans and natural sys-
tems (cramer et al. 2014; iPcc 2014). it is also a large 
research challenge to understand their nature as well as 
forecast or project their development over time (eade et al. 
2012; hamilton et al. 2012; dole et al. 2013; Pepler et al. 
2015). attempts to do this are made using, for example, 
extreme value analysis (eVa), which aims at a description 
of the behavior of probability density distributions’ tails 
using particular mathematical functions (see, e.g., Svens-

son, Jones 2010, or Dalelane, Deutschländer 2013). how-
ever, rather long data series are required to apply those 
methods. using a method which links atmospheric states 
and local meteorological extremes appears to be a feasible 
alternative. This is an entirely different approach since the 
extremes are identified as atmospheric conditions with  
a high degree of distinctiveness (by way of classification) 
prone to yielding an adequate description of a local meteo-
rological parameter, called the predictand. The method 
makes no assumptions as to extreme characteristics of the 
time series of the local meteorological parameter. The lo-
cal extremes are merely an outcome of the identification of 
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the classification of “extreme-prone” atmospheric condi-
tions. it is a further advantage of the method that it can, 
however, be applied in conjunction with extreme regional 
conditions by selecting an appropriate predictand, e.g., the 
surpassing of a certain extreme threshold – see also the 
note at the end of Section 1.4. Some background and a ra-
tionale are given in the following sections of the introduc-
tion. 

1.1. Context – patterns and classification

The aim of the authors is to develop an alternative 
strategy to achieve a classification of atmospheric struc-
tures. But before this will be addressed, some remarks on 
“standard” approaches needs to be made. The broader con-
text is synoptic climatology, which, according to Glick-
man (2000), deals with »...the study of climate from the 
perspective of atmospheric circulation, with emphasis on 
the connection between circulation patterns and climatic 
differences« on a hemispheric or regional scale. it is com-
mon to »determine distinct categories of synoptic weather 
patterns and then to assess statistically the weather condi-
tion associated with these patterns«. in essence, synop-
tic climatology is about identifying linkages between the 
large scale, i.e., on the order of one to several thousand 
km, and the regional scale, i.e., on the order of several ten 
to several hundred km. 

This is rooted in two paradigms:
• There are semi-stable patterns within atmospheric 

structures which allow for such a classification;
• The atmospheric states assembled in any of the classes 

are relatively homogeneous.
consequently, it is meaningful to apply pattern identi-

fication methods and use the ensuing “subdivision”/clas-
sification of atmospheric states for pattern-specific analy-
ses. This is corroborated by a further observation 
(Dzerdzeevskii 1963, quoted in Barry, Perry 1973): »...all 
changes in temperature and precipitation … are connected 
with changes in frequency and duration of large-scale 
circulation patterns«. Further methodological groundwork 
can be found, e.g., in chapters 3B and 3c of Barry and 
Perry (1973). in order to match the temporal scale of ex-
pected atmospheric structures and available data, daily 
resolution will be favoured in the methodology.

ideally, all classes should be as distinct as possible, ex-
hibiting a maximum of dissimilarity, whereas an individual 
class should be as uniform as possible, i.e., its members 
should exhibit a maximum of similarity. in order to achieve 
such a classification there are two fundamental approaches 
(yarnal 1993), which are summarised in the next two sub-
sections.

1.2. The Circulation-to-Environment (C2E) strategy

This is by far the most frequently applied strategy. it re-
lies on morphological similarities between features in large-
scale atmospheric fields, e.g., the geopotential, which are 
used to build the classes. The step towards the regional cli-
mate (the environment) is subsequently made by analysing 
regional meteorological parameters, such as surface tem-
perature, precipitation, etc., in grouped or stratified form, 
i.e., jointly for the individual classes.

the determination of which fields are similar to each 
other can be carried out in a manual-empirical way, i.e., by 
expert assessment. Well-introduced classifications such as 
the großwetterlagen (hess, Brezowsky 1952; gersten-
garbe, werner 2005) or the British isles weather Types 
(lamb 1972) are of the manual-empirical kind.

however, there are numerous multivariate mathemati-
cal methods through which a classification can be achieved 
in an automated way (Barry, Perry 1973). These encom-
pass empirical Orthogonal Functions (eOFs), clustering, 
neural nets and so forth. a cOst action (cOst733 – har-
monization and applications of Weather types classifica-
tions for european regions) took place between 2006-
2011, aiming at an intercomparison of atmospheric pattern 
classification methods. For more detail the reader is re-
ferred to, e.g., huth et al. (2008), Philipp et al. (2010) and 
Beck, Philipp (2010). in the individual classification meth-
ods, as they were compared in the cOST733 action, the 
patterns are either determined from single atmospheric 
fields, e.g., surface pressure, geopotential, temperature, or 
a combination of those fields. a great deal of explained 
variance, when compared to non-classified data, can be ac-
complished when stratifying regional data according to the 
large-scale c2e classes (cf., e.g. enke, Spekat 1997).

1.3. The Environment-to-circulation (E2C) strategy

this classification strategy takes a route that is opposite 
to the c2e strategy. it first focuses on the regional scale by 
identifying the range of a meteorological parameter, e.g., 
temperature or precipitation. This range is then divided 
into a number of classes to which the days are assigned. 
The step from the regional scale (the environment) to the 
large scale (the circulation) is made by building class-
wise composites of the atmospheric fields using the days 
in each class. The principle is described and visualised in 
enke et al. (2005) and Spekat et al. (2010).

e2c classifications are rather infrequently used. One in-
stance, however, constitutes the building block of a statistical 
downscaling method called weTTreg (german: wetterla-
gen-basiertes regionalisierungsverfahren. english: weather 



Classification by multiple regression – a new approach towards the classification of extremes 27

pattern-based regionalization method) which has been ap-
plied in numerous climate change and climate impact studies 
for german Federal and State environment agencies, pub-
lished, e.g., in kreienkamp et al. (2009, 2011a, b).

it should be noted that e2c-based methods by their 
very nature need to be adapted to local conditions, whereas 
automated c2e classifications as mentioned in subsection 
1.2 apply a methodology which is unified, regardless of 
regional particularities. The price for the somewhat “uni-
versal” c2e approach is their rather limited ability to de-
scribe regional climates, e.g., by way of forming classes 
that separate well value ranges of a regional meteorologi-
cal parameter, as shown in Spekat et al. (2010).

1.4. Classification, future climate and extremes

classification is a valid strategy in synoptic clima-
tology, particularly when it is applied to link large-scale 
and local climate behaviour. it is instrumental in reduc-
ing variance in regional climate time series and constitutes 
an approach to producing meaningful “subdivisions” of 
the regional climate which are a vantage point for further 
analyses. Shifts in the class frequencies can also be inves-
tigated to assess the properties of a changing climate. This 
encompasses studies of the class frequency distribution’s 
development over time (e.g. cahynová, huth 2009).

applying classification to climate projections leads to in-
sights concerning possible future changes in the atmospheric 
circulation and – generally following Dzerdzeevskii’s hy-
pothesis (cf. subsection 1.1) – leads to assessments of future 
climate behaviour.

however, the strength of descriptions and climate pro-
jections combined with classifications lies within the 
realm of the average climate. some of the findings of the 
cOST733 action point in that direction:
• in order to capture extremes by classification, a high 

number of classes are required. This creates a dilemma 
because a high number of classes also raise questions of 
representativeness; are 30 classes justified when decadal 
daily data are being classified?

• it may not be feasible to assume that there is the one  
atmospheric pattern which governs all extremes; although 
they are by definition rare events, extremes might still be 
found in conjunction with different patterns.
within the frame of the wereX-Study (german: wet-

terlagen, regressionen und extreme; english: Weather pat-
terns, regression and extremes) for the state environment 
agency of saxonia, an attempt was made to use the classes 
produced by different classification methods as proxies for 
extremes. this means that the following conjecture was ap-
plied: whenever a day of class X occurs it is assumed that it 

is also an extreme, according to an extreme indicator y, e.g., 
an ice day with a maximum temperature below 0°c. then, 
contingency tables were determined containing the joint oc-
currence of x and y as well as the cases x but (not y) and (not 
x) but y as well as neither x nor y. using verification statis-
tics, skill scores were computed. several classifications 
(subjective, automated, e2c, c2e) were tested and the con-
clusion was (kreienkamp et al. 2011b) that extremes cannot 
be skillfully captured by “standard” classifications, regard-
less of their approach.

a note on extremes: On the one hand, some of the meteo-
rological parameters are themselves extremes, such as daily 
maximum or minimum temperature (see list in section 2). so 
it may be feasible to apply a classification on those parame-
ters to identify particularly relevant conditions. On the other 
hand, there is ongoing activity by WMO to define and dis-
seminate a set of relevant extreme indicators (klein tank et 
al. 2009) – some are in conjunction with a variable being 
above or below a defined value (threshold-based) and some 
are in conjunction with a value belonging to a defined portion 
of the value range encountered in a time series (percentile-
based). The consequence is that the time series to be analysed 
is transformed from containing the meteorological parameter 
itself to a binarised form, i.e., 1: criterion is met, and 0: crite-
rion is not met. when dealing with two-dimensional data 
structures, such as the study of data from a network of stations 
or an array of grid points, there is an added possibility: look-
ing at an area and determining for each day the share of sta-
tions for which a certain criterion has been met. 

1.5. A different look at patterns – a potential way out 
concerning extremes

in the previous subsections of the introduction we estab-
lished the usefulness of atmospheric patterns and classifica-
tion and yet noticed that they are more tailored to describing 
average climate conditions and less so the extremes. it is 
therefore proposed that we look in a different manner at the 
concept of what a pattern is describing.

The linkage between large-scale patterns and regional-
scale meteorological variables can be determined by way 
of a multiple regression. The aim is to indirectly describe, 
e.g., the regional temperature through a set of large-scale 
fields, weighted and scaled by regression coefficients. so 
for each day a “setting” of regression coefficients is 
achieved, which can be interpreted as a vector.

Then, the concept of similarity is applied with respect 
to the “settings” of those regression coefficients, meaning 
that a class is formed by a pattern of how the regression 
coefficients are arranged for individual days. the pattern 
construction method of choice is k-means clustering (Mac-
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Queen 1967) which is widely applied in synoptic climatol-
ogy (see e.g., Barry, Perry 1973; cuell, Bonsal 2009).

it should be expected that such a methodology – screen-
ing regression followed by k-means clustering – isolates 
extremes in the clustering’s starting partition and groups 
similar events accordingly. kreienkamp et al. (2014) show 
an application with respect to the occurrence of convective 
events in the german Federal State of hesse.

1.6. Structure of this paper

Following this introduction the paper deals with the 
data requirements in Section 2. Section 3 contains a de-
scription of the method and Section 4 presents some re-
sults with emphasis on extremes and extreme indicators. 
a summary and outlook is given in Section 5.

2. Data

The methodology links regional scale meteorological 
parameters and large scale atmospheric variables. There-
fore, in order to develop these linkages, two kinds of data 
are necessary:
• daily time series of surface measurements at climate 

stations for the time frame 1971-2010. These are sup-
plied for this study by the german weather Service 
(dwd) for 36 stations in the german Federal State of 
hesse (see table 1). they include extreme-relevant pa-
rameters:
− Minimum temperature (Tn);
− daily average temperature (TM);
− Maximum temperature (tX);
− Precipitation (rr);
− water vapour pressure (dd);
− daily average of wind velocity (FF);

• re-analysis data for a “climatology of the free atmo-
sphere”. the nceP/ncar re-analyses (kalnay et al. 
1996) offer coverage of the desired time frame. Fields 
of geopotential, temperature and humidity at several 
height levels were extracted and an array of 60 fields in 
total was derived (see Table 2). This is the so-called 
pool of potential predictors used in the screening re-
gression analysis (see Subsection 3.1). They are 
mapped onto a field of 21×21 equidistant grid points, 
110 km apart.
in the case of the assessment of the future development 

of extremes, simulations by a General circulation Model 
(gcM) are required.

the majority of the atmospheric parameters, given in 
table 2, are self-explanatory. in the subsections of appen-
dix a, some of the others are briefly described. an example 

for the reconstruction of a predictand by way of a regression 
using four predictors is given in appendix B.

3. Method Description

The method presented in this paper contains elements 
of the circulation to environment strategy (cf. Subsec-
tion 1.2) since it defines structures in a morphological way 
and classifies the data according to similarity/dissimilarity 
in these structures. The innovation lies in the novel con-
cept of “structure” which does not analyse the placement 
of steering vortices in the atmosphere (as the established 

Table 1. list of the 36 climate stations used for this study

no. name
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tit
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at
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n

1 alSFeld-eiFa 50.75 9.35 300

2 BeerFelden 49.57 8.97 450

3 BiedenkOPF 50.92 8.53 349

4 Burgwald-BOTTendOrF 51.03 8.82 293

5 cOelBe_ kr_ MarBurG 50.85 8.77 182

6 dillenBurg 50.73 8.27 314

7 eSchwege 51.18 10.07 170

8 FrankFurt_M (FluGW.) 50.05 8.60 112

9 Fulda 50.53 9.68 255

10 geiSenheiM 49.98 7.95 110

11 gernSheiM 49.77 8.48 90

12 Giessen_WettenB 50.60 8.65 203

13 gilSerBerg-MOiScheid 50.97 9.05 340

14 greBenhain-herchenhain 50.48 9.27 608

15 hersFelD_BaD 50.85 9.73 272

16 hOFgeiSMar-BeBerBeck 51.53 9.48 242

17 hOMBerg 50.73 9.00 250

18 kaSSel 51.30 9.45 231

19 kl_FelDBerG_ts 50.22 8.45 826

20 liMBurG_lahn-OFFheiM 50.42 8.07 185

21 lindenFelS-winTerkaS 49.72 8.78 445

22 MelSungen-BuerSTOSS 51.13 9.52 254

23 nauheiM_BaD 50.37 8.77 142

24 neukirchen-hauPTSch 50.90 9.40 500

25 nidderau-windecken 50.23 8.90 180

26 SchaaFheiM-SchlierBach 49.92 8.97 155

27 SchOTTen 50.50 9.12 265

28 SOnTra 51.07 9.93 265

29 wahlSBurg-liPPOldSBerg 51.62 9.58 176

30 waldeMS-reinBOrn 50.27 8.37 380

31 warTenBerg-angerSBach 50.63 9.45 270

32 waSSerkuPPe 50.50 9.95 921

33 wieSBaden (Sued) 50.07 8.27 147

34 WilDunGen_BaD 51.10 9.12 310

35 WillinGen_uPlanD 51.30 8.60 580

36 wiTzenhauSen 51.35 9.85 133
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“classical” methods would do) but, rather, the magnitude 
of the linkage between an objectively selected set of pre-
dictors and the predictand. the method identifies specific 
grid points from atmospheric fields as predictors. the pre-
dictand is a local meteorological parameter. The method 
also has elements of the environment to circulation strat-
egy (cf. subsection 1.3) since – at least optionally – it can be 
set up to describe events occurring at a subset of the stations 
wherein the subset is determined by way of separating the 
predictand data series according to the mean values of the 
predictand. The stages and steps mentioned in the subsec-
tions hereafter correspond to the items displayed in Fig. 1.

3.1. Stage 1: Regression – constructing the building blocks

at the onset, a regional variable (the predictand) is de-
fined, e.g., the daily mean of the precipitation derived from 

a number of stations; this could be a regional subset of the 
stations or an objectively determined subset according to 
criteria described in Section 4.2.2 and 4.2.3. in this stage, 
the method strives for an indirect description (or recon-
struction) of that regional variable by the values at indi-
vidual grid points of one large-scale meteorological field, 
or a combination of grid points of several such fields (the 
predictors) from the re-analysis data. The method of choice 
is a screening regression.

3.1.1. step 1.1 – identification of the most relevant field

a correlation is computed for the predictand time series 
and each grid point for every one of the members of the 
pool consisting of fields of the 60 potential predictors (see 
top right portion of the schematic in Fig. 1) – at each and 
every grid point <m,n> of the predictor field. For the sake 
of brevity and comprehensibility the fact that it is an indi-
vidual co-ordinate of the predictor field is implied and not 
explicitly spelled out in the equations. this yields the first 
predictor P1, i.e., the single most “influential” atmospheric 
parameter (at co-ordinate <m,n>) for our predictand with 
the correlation r1. For example, the vorticity in 850 hPa at 
a certain co-ordinate <m,n> might be the descriptor fea-
turing the highest correlation with respect to precipitation. 
since it is only one predictor which is identified in this 
stage, r1 is a single and not a multiple correlation. when 
two and more predictors are gradually identified (see sec-
tion 3.1.2), this becomes a multiple correlation.

3.1.2. step 1.2 – identification of further relevant fields

keeping the first predictor P1 found in step 1 in the cal-
culations, a further predictor P2 is then identified. the mul-
tiple correlation r2 of P1 in combination with all 59 remain-
ing potential predictors is computed at every grid point. in 
cases where an r2 > r1 can be found, the combination P1 → 
P2 is accepted. if not, P1 remains the sole predictor. 

This step may be performed several times so that up to 
four predictors P1 → P2 → P3 → P4 are identified, always 
based on the principle that the predictors from step Q-1 are 
kept and at step Q the search for a new predictor in combi-
nation with the previous one is launched and introduced to 
the vector of predictors in cases of the correlations being 
rQ > rQ-1.

The upper limit of using four predictors is an empirical 
threshold which balances a) the gain of information by adding 
more predictors with b) the risk of over-fitting and numerical-
statistical instability. in fact, the screening regressions that 
were performed with various predictands never broke off be-
fore an identification of four predictors was achieved.

table 2. list of the potential predictor fields used in the screen-
ing regression analysis. a number of them are described in the 
appendix

no. Field level(s)

1-4 geopotential 1000, 850, 700, 500 hPa

5-6 Temperature 850, 500 hPa

7-8 relative humidity 850, 500 hPa

9-11 horizontal Geopot. Diff. n/s 850, 700, 500 hPa

12-14 horizontal Geopot. Diff. e/W 850, 700, 500 hPa

15-18 vorticity 1000, 850, 700, 500 hPa

19-21 Thickness 1000/850, 1000/700, 
1000/500 hPa

22 vertical Temp.-difference 850-700 hPa

23-25 horizontal Streamline-diff. 1000, 850, 700 hPa

26 Frontal angle after Margules -

27 lability index showalter -

28 lability index enke (dry) -

29 lability enke (humid) -

30-32 gradient 1000, 850, 700 hPa

33-34 absolute humidity 850, 700 hPa

35-36 advection of Temperature 850, 700 hPa

37-38 advection of humidity 850, 700 hPa

39-40 Thermal wind u and v component 1000/850 hPa

41 advection indicator 1000/850 hPa

42-43 Thermal wind u and v component 850/700 hPa

44 advection indicator 850/700 hPa

45-46 Thermal wind u and v component 700/500 hPa

47 advection indicator 700/500 hPa

48-49 Pseudopot. Temperature 1000, 850 hPa

50-53 24hr geopotential change 1000, 850, 700, 500 hPa

54-57 isallobaric wind 1000, 850, 700, 500 hPa

58 The Sum Predictor -

59 day length (hours) -

60 Short wave radiation -



30 W. Enke, A. Spekat, F. Kreienkamp

3.1.3. step 1.3 – Daily regressions, the source of the patterns

the previous steps identified up to four predictors 
which indirectly describe the predictand. For each day it 
is then determined which share the individual predictors 
contribute to the regression. the regression coefficients 
R1…R4 are factors in the regression equation which are 
assigned to the predictor fields P1…P4 and which are 
needed to reproduce the predictand. The principle, i.e., 
the day-to-day configurations of R1…R4, is depicted in 
the bar diagram which is in the left part of the “Step 1.3” 
segment of Fig. 1. it should be noted that the regression 
coefficients R1…R4 vary in a systematic and smooth way 
from day to day.

when this is applied to a time series of length L, e.g., 
all days from 1 January 1981 to 31 december 2010, a ma-
trix of L×Q (Q: number of predictors, at most four) is gen-
erated. For each of the l days d there is a pattern formed 
by a vector, the components of which are the regression 
coefficients R1d…R4d. it is exactly this set of patterns 
which is analysed in the subsequent stage with the aim of 
organising them into distinct classes.

3.2. Stage 2: Classification – identification of similar cases

the second stage of the method – below the dotted line 
in the schematic display (Fig. 1) – is a classification. the 

method of choice is k-means clustering. This is an instance 
of the clustering methods which first generate a starting 
partition (cf. Subsection 3.2.1) of N maximally dissimilar 
cases CSP1…CSP N and subsequently forms N classes C1…
CN by assigning the remainder of the cases to their most 
similar case (cf. Subsection 3.2.2).

There is an optional step (cf. Subsection 3.2.3) in which 
individual classes are further analysed with respect to struc-
tures and dependencies that may have been missed in the 
initial classification steps, described in subsection 3.2.3.

the objects to be classified are the individual daily 
“settings” of the regression coefficients (e.g., in qualitative 
terms, R1 >> 0, R2 < 0, R3 > 0, R4 = 0, etc.).

3.2.1. step 2.1 – identification of a starting partition

at first one day d1st is randomly selected from the L days 
in the time series. it has a vector of four regression coeffi-
cients R1d1st…R4d1st. expressed as Ri (d1st) in the equation. 
Then the day with the most dissimilar vector of four regres-
sion coefficients is identified by evaluating:

with i: enumerator of the four regression coefficients; dtest: 
one of the remaining L–1 days to be tested against d1st for 
dissimilarity of the vector of regression coefficients.

Fig. 1. schematic of the screening regression and classification method

∑ |Ri (d1st) − Ri (dtest)| → max4

i=1
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this yields the first member of the starting partition 
CSP1, which exhibits maximum dissimilarity to the ran-
domly selected day; CSP1 is sometimes also referred to as 
the first centroid. this procedure is applied N–1 times to 
identify the remaining centroids, yielding a set of cases 
(ten in the bar diagram which is associated with Step 2.1 
in the schematic of Fig. 1).

3.2.2. step 2.2 – assigning cases to the members of the 
starting partition

having generated the set of N centroids, the next task 
is to test, for each of the L–N days, which of N the cen-
troids has the greatest similarity, i.e., to perform the class 
assignment for the remaining days – as shown in the bot-
tom row of Fig. 1. This is done by evaluating:

with i: enumerator of the regression coefficients; dtest: 
one of the remaining L–N days to be tested against Cspn 
for similarity of the vector of regression coefficients and 
Cspn:nth centroid.

The evaluation is performed for all n∈1…N centroids. 
at the end of the assignment step there is a classification 
according to the principle of maximal similarity to the cen-
troids of the starting partition. if a class contains 10 or less 
cases (depending on the desired “extremity” of the classi-
fication, the required minimum membership can be set to 
other values) it is dissolved.

Note 1 – On the building of the starting partition
in practice, it turned out that additional effects had to be 

considered. Suppose there is a multi-dimensional cloud of 
configurations R1…R4 for all days, of which at step m = 1 the 
first one d1st is randomly selected. at step m = 2 the most 
dissimilar case to the m = 1 selection is located at the “op-
posite end” end of the cloud. yet, when successively ap-
plied, the third case (m = 3, by definition most dissimilar to 
the m = 2 selection) has a high probability of being located 
close to the first case again. in other words, there is a kind of 
“see-saw” in action which yields a suboptimal starting parti-
tion. another effect stems from the question of whether the 
randomly selected case is really the best possible initialisa-
tion of the building procedure. a result-oriented procedure 
had been devised that addresses both issues:
• in a succession of search processes, every day is used 

as a tentative starting day d1st yielding a tentative start-
ing partition consisting of N (e.g. 10) members.

• For each tentative starting partition the assignment of all 
remaining days is carried out, yielding N classes with Nn 

members. Moreover, for each class the mean class-spe-
cific mean of the predictand P (e.g., the maximum tem-
perature, or the share of stations having experienced 
thunderstorms or wind gusts, etc.) xpn is computed.

• a specific distance measure for the tentative classifica-
tion DMt (t stands for tentative here) is computed with 
the aim of checking if the tentatively produced assign-
ment of days to the tentative starting partition leads to 
a constellation in which all classes are well separated. 
This is the weighted sum of the deviation of the class-
specific averages xpn from the average across all classes 
x according to:

• a tentative classification is excluded if classes with too 
few members (e.g., 10) are produced.

• if, in the light of the latter criterion, no tentative classi-
fications are found, the number of classes N is stepwise 
reduced by 1 and the procedure is repeated.
Thus, based on numerous attempts, a starting partition 

is produced that, under the data-specific circumstances, 
yields a well-separated set of classes using the best pos-
sible initial case.

Note 2 – On the exchange procedure in k-means clustering
The “standard procedure” of the k-means clustering 

foresees a third step in which iteratively an exchange of 
cases between classes takes place until a stable state is 
reached. the reason is that a centroid’s position is not fixed 
in multidimensional space. rather, with each case added to 
a centroid its position is recalculated leading to a gradual 
“trajectory” away from its initial position (see, e.g., enke, 
Spekat 1997 for a visualisation of this effect). at the end 
of the assignment (Step 2.2) this aforementioned centroid 
drift results in a state in which cluster membership is (i) 
ambiguous for a subset of the cases and (ii) is not entirely 
correct, since the cases picked up early in the trajectory 
might ultimately not be the best match regarding the final 
position of the centroid.

the exchange step of k-means clustering is devised to 
address this effect. however, in the context of extremes 
there is an important detrimental side effect: Small classes, 
as they appear when the initial class assignment (Step 2.2) 
has taken place, will receive extra cases, which renders 
them less focused on extremes. therefore, the exchange 
step is deliberately not carried out, accepting the risk that 
the cluster separation is not optimal – an assessment of the 
effects of this omission showed that the cases that might 
change class membership are part of rather large clusters 
that tend to describe the average state and are thus not rel-
evant for the extreme-oriented analyses.

∑ |Ri (Cspn) − Ri (dtest)| → min4

i=1

DMt = ∑N
n=1 [(xpn − x)2 · Nn], DMt → Max
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3.2.3. Step 2.3 Further within-class structures

The methodology, once it is applied, evaluates correla-
tions of potential predictors from large-scale atmospheric 
fields with regional climate parameters. it can be surmised, 
nevertheless, that more dependencies may be “hidden” and 
a distinct analysis of cases within an individual class may 
reveal the usefulness of additional predictors. Therefore, 
as an option, the method can be applied a second time, but 
this time restricted to all days belonging to an individual 
class, yielding “second-order classes”. Thus, all the steps 
described above (screening regression, formation of a start 
partition, class assignment) would then be carried out for 
the particular subset of all days gathered in a “first-order 
class”.

it should be added that for reasons of numerical stabil-
ity this second application of the methodology on an indi-
vidual class can only be carried out if there are sufficient 
cases. experience indicates that the minimum requirement 
is on the order of 20 members in a class. The method then 
also applies criteria, explained in subsection 3.1.2, to con-
strain the number of “second-order classes”. There are 
rather few of these classes generated, frequently between 2 
and 5, depending on the size of the class that is subjected 
to this step.

4. Examples and Discussion
4.1. Screening regression

So which are the large-scale predictors that are highly 
correlated with the local predictand? and do they exhibit 
particularities with respect to the kind of predictand?  
a few example screenings were carried out (i) for the entire 
year, the winter and summer half years and the four sea-
sons, which totals 7 time frames and (ii) for stations 
grouped according to the broad order of magnitude of the 
predictand (e.g., lowland stations were put together in  
a group for their temperature and precipitation characteris-
tics; they are different from stations in a more elevated ter-
rain) yielding 7×2 screenings. then a scoring system was 
applied assigning five points to a variable that was put in 
the first rank (meaning that this predictor out of the pool of 
potential predictors has the greatest efficiency in describing 
the predictand). The second rank was assigned three points, 
the third rank two points and the fourth rank one point. The 
results are displayed in table 3 – for brevity’s sake, the 
predictors are not explicitly spelled out in table 3 but, rath-
er, their reference number (cf. Table 2) is used.

not surprisingly, relative topography scores high with 
regional temperature and the description of precipitation  
depends on incoming radiation (or, rather, lack thereof) as 

well as gradient and vorticity-related information. The re-
gional behaviour of the predictand vapour pressure is depen-
dent on the lengths of the days, relative topography and sev-
eral kinds of large-scale humidity information, and the wind 
has a strong linkage to gradients in the geopotential fields.

in the following section, some examples are given using 
a selection of meteorological parameters and extreme indi-
cators, though not all of those which are featured in Table 3.

4.2. Characteristics of the classes generated by the method

in the following examples, the classification is carried 
out according only to the method’s steps 1.1 through 2.2 
described in Subsections 3.1 to 3.2.2. This means that  
a deeper look into within-class structures (cf. Subsection 
3.2.3) is not dealt with. generally speaking, there is the po-
tential of some extra benefit in terms of the correlation be-
tween reconstructed-from-proxies time series and the time 
series-consisting-of-measurements. however, conveying 
the method’s principle is the main aim of this paper. More-
over, it is envisaged that for many applications a classifica-
tion on the level described in Subsections 3.1 to 3.2.2 is 
sufficient.

4.2.1. Predictand: Maximum temperature

as an illustrative example, the method was applied to 
1971-2010 maximum temperature (TX) data from 36 cli-
mate stations in the german Federal State of hesse. The 
classification method was then performed – using mainly 
the TX predictors indicated in table 3 – for the summer 
half-year (april-September). Furthermore, the method 
was conditioned to produce classes with a membership of 
10 or more days. This resulted in one class being dis-
solved, leaving 9 classes. Table 4 presents the characteris-
tics of these classes. alongside the number of members 
(days that were assigned to an individual class), the mean, 
maximum and minimum, and 95 percentile for each class 
are given. in addition, using the daily settings of the re-
gression coefficients, a “reconstruction” of the TX series 
was performed. This series has a correlation of 0.82 with 
the original TX series.

it should be noted that, indeed, rather well defined  
extreme classes were produced. classes 2 through 6, in 
particular, contain either very cold or very warm days,  
respectively. classes 1, 7 and 8 represent the average con-
ditions, not the extremes, their membership being >10% of 
all analysed days.

as briefly mentioned in section 4.1, there is an option-
al precursor step which applies a clustering procedure to 
group the climate stations according to the value range of 
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the predictand (here: TX). if particularly high TX values 
are aimed for – in essence the stations then are from the 
lower altitude areas of hesse (between 90 and 350 m 
above sea level) – 25 stations are selected. alternatively, 
the complementary 11 stations, which exhibit lower TX 
values, can be subjected to the classification. however, 
concerning the relevant predictors identified by the screen-
ing procedure, there are no major differences with respect 
to those station groups as well as the ungrouped stations. 
The “mainstays” (e.g., relative topography or the sum pre-
dictor) provide the bulk of the information in all cases. 
there is merely a slight shift towards extracting informa-
tion from absolute humidity fields at higher altitudes ver-
sus having useful contributions by geopotential and vortic-
ity at lower altitudes. The correlations remain at 0.82 
throughout.

4.2.2. Predictand: Probability of exceedance of TX = 30°c

The data from the 36 stations are transformed in the 
following way: For each day of the summer half-years, 
the percentage of the stations is computed at which a TX 
>30°c occurred. So a value of 100 means that all stations 
exhibit the surpassing of this threshold – something that 
happened only 7 times in the years investigated (1971-
2010). This number of cases increases to 18 if one station 
is allowed to not surpass 30°c (percentage: 97.2) and it 
further increases to 33 if the non-occurrence can be at two 
stations (percentage: 94.4) and to 53 if three stations are 
allowed to remain below TX = 30°c.

The screening multiple regression procedure detects 
that the highest potential of indirectly describing the time 

series of these percentages for the summer half-year by 
way of atmospheric properties lies in the relative topogra-
phy 1000/850 hPa, the absolute humidity at 700 hPa, the 
day length and vertical temperature difference between the 
850 and the 700 hPa level. The multiple correlation coef-
ficient, however, is 0.48 and thus clearly lower as for the 
predictand TX.

Table 5 shows the characteristics of the classes being 
formed. the first class, containing the vast majority of all 
days, represents the average conditions, where – in some 
cases – up to about 30 station may exceed the TX = 30°c 
threshold, yet the mean percentage is much below that. 
the second class contains a well-defined set of extremely 
hot days. at least 23 of the 36 stations, often all of them, 
exhibit the surpassing of the 30°c threshold. it is further-
more remarkable that there are three distinct cold classes 
(nos. 3, 4, and 6) in which the threshold is never surpassed. 
The fact that these cases are not gathered in one single 
class is due to the different settings of the regression coef-
ficients that characterise those classes. the remaining 
classes (nos. 5, 7, and 8) contain a majority of days which 
have the threshold exceedance at a high fraction of the 36 
stations (indicated by the rather high 95-percentile values) 
but also contain a sizeable number of days where no sta-
tion showed a TX >30°c. Thus, they can be considered 
ambiguous, i.e., not fully extreme, yet with a tendency of 
belonging to the high temperature range.

4.2.3. Predictand: Probability of exceedance of RR = 20 mm

The data of the 36 climate stations are transformed as 
follows: First an objective method is used to group the sta-
tions into high-precipitation and low-precipitation bins. 
The selected seven high-precipitation stations are either 
from altitudes higher than 450 a.s.l. or the rain amounts 
received are orographically enhanced. next, for each day 

Table 3. Scoring of the predictors (enumeration according to 
entries in table 2) identified by the screening regression for se-
lected predictands TX, TN, RRall (at climate and precipitation sta-
tions), RRcli (at climate stations only), dd (daily means) and FF 
(daily means)

Predictand Predictor Score Predictand Predictor Score

TX

19 62

TN

19 56

59 42 59 36

58 9 7 15

15 7 12/58 10

RRall

60 23

RRcli

60 21

12 13 12 18

16 10 15 9

58 6 58 6

DD

59 38

FF

31 31

19 38 30 17

33 22 59 15

7 14 32 6

Table 4. characteristics of the classes obtained by an analysis of 
TX in the summer half-year (april to September), applied to 25 
lowland stations from the german Federal State of hesse. Meth-
od was forced to retain only classes with ≥10 members

class Members Mean Max Min Q95

1 979 26.8 34.4 17.1 31.3

2 15 12.2 15.1 10.5 13.8

3 15 32.2 37.1 29.5 34.1

4 37 10.0 16.2 1.0 15.2

5 182 30.9 36.9 24.9 34.8

6 44 12.1 16.3 1.8 15.6

7 554 13.7 23.1 3.7 19.1

8 2531 22.1 31.3 8.4 27.4

9 2962 17.1 27.1 3.7 23.0
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of the summer half-years, the percentage of the stations is 
computed at which RR >20 mm occurred. So a value of 
100 means that all stations exhibited the surpassing of this 
threshold – something that happened only 13 times in the 
years investigated (1971-2010). This number of cases in-
creases to 26 if one station is allowed to not surpass 20 
mm/day (percentage: 85.7) and it further increases to 33 if 
the non-occurrence can be at two stations (percentage: 
71.4). it should be added that a higher number of these 
events occur outside the investigated period of the summer 
half-year, i.e., in the months October through March.

The screening multiple regression procedure detected 
that the highest potential of indirectly describing the time 
series of these percentages for the summer half-year by 
way of atmospheric properties lies in the incoming short-
wave radiation, the vorticity at 850 hPa, the pseudopoten-
tial temperature at 850 hPa, and the humidity advection 
at 850 hPa. the multiple correlation coefficient, however, 
is comparably low, showing a figure of 0.35. this may be 
a hint towards the relative “blurriness” of the connection 
between large-scale atmospheric states and this rather ex-
treme predictand.

note: if the threshold of 10 mm/day instead of 20 
mm/day is analysed, the correlation coefficient 
rises from 0.35 to 0.50. Moreover, the screening 
regression picks other predictors (a stability index, 
and horizontal geopotential gradient-based prop-
erties) to contain the most information for an ad-
equate description of that threshold.

Table 6 shows the characteristics of the classes being 
formed. the first class, containing the vast majority of all 
days, represents the average conditions. a few of its mem-
bers have a surpassing of the threshold for all stations 
(Max = 100.0%), but the vast majority have much lower 
shares of stations meeting this criterion, which is indicated 
by the 95-percentile of about 15 %. classes 2 and 5 signify 
conditions with a tendency to have an RR of more than 

20mm/day at a sizeable number of stations, although they 
do contain days where this threshold was surpassed at 
none of the 7 stations. however, 95-percentiles above 70% 
show that mostly extreme precipitation events are gath-
ered here. On the other hand, classes 3, 4, 7 and 9 isolate 
cases with comparably rare occurrences of RR >20 mm. 
class 4 in particular shows the surpassing of this threshold 
appearing at a mere 15% of all stations, or even less (cf. 
the “Max” column of table 6). the rather low 95-percen-
tiles of these classes are a further indicator of this impres-
sion. Furthermore there are several classes describing days 
with a low probability of an RR >20 mm/day event occur-
ring, which stems from the fact that these classes are all 
characterised by different settings of the contributing re-
gression coefficients. classes 6 and 8 contain cases which 
have neither a high profile concerning the occurrence of 
RR >20 mm/day nor its non-occurrence.

note: using the RR >10 mm/day threshold as the 
predictand, which is surpassed at the entirety of the 
seven stations much more often (about 90 times in 
the 40 summer half-years investigated), not only  
a higher correlation between the describing predic-
tors and the predictand (see above) can be found, 
but also a better separation of the (not quite so) ex-
treme cases in the classes emerges.

Table 6. as in Table 4, but for the predictand “probability that 
RR >20 mm”, applied to 7 stations at higher elevations in hesse

class Members Mean Max Min Q95

1 5668 2.1 100.0 0.0 14.3

2 11 23.4 100.0 63.9 71.5

3 209 0.9 100.0 0.0 0.0

4 486 0.1 14.3 0.0 0.0

5 164 22.8 100.0 0.0 85.7

6 36 7.5 100.0 0.0 42.9

7 98 3.9 57.1 0.0 14.3

8 55 7.0 57.1 0.0 42.9

9 592 0.4 100.0 0.0 0.0

4.2.4. Predictand: randomly ordered days

This test was carried out to obtain an indication of what 
connections are identified by pure coincidence. in this  
example, the tX series of all 36 stations were randomly 
ordered for the summer half-years 1971-2010. This re-
sulted in a very low correlation coefficient of 0.08. table 
7 shows that the method, indeed, does produce some vari-
ety in the class mean values, as well as the class size. The 
number of classes is smaller than in all previous examples, 
though – there is simply not enough differentiation beyond 

Table 5. as in Table 4, but for the predictand “probability that TX >30°c” 

at the 36 climate stations in hesse

class Members Mean Max Min Q95

1 5643 0.5 86.1 0.0 0.0

2 13 88.5 100.0 63.9 100.0

3 76 0.0 0.0 0.0 0.0

4 204 0.0 0.0 0.0 0.0

5 99 43.2 100.0 0.0 97.2

6 495 0.0 0.0 0.0 0.0

7 727 16.6 97.2 0.0 77.8

8 61 59.4 100.0 0.0 97.2
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mere randomness to form more classes. however, none of 
them could earn the label “extreme” at all. they all contain 
days with TX >30°c as well as days with TX <−4°c.

4.3. Discussion – what can be gained?

Why all this effort, when extreme days could be identi-
fied by simply filtering them out of the time series?

For one, these days are identified by linking them to cer-
tain extreme atmospheric conditions. they are collected in 
the different classes because conditioning factors of the 
large-scale circulation are similar. having applied the clas-
sification to climate station time series, the user is supplied 
with rather homogeneous subsets of extreme days, ready to 
be used in further analyses.

For two, in the actual climate there may be a traceable 
connection between “real surface measurements” (station 
data) and “real free atmosphere information” (reanalysis 
data). But what if climate model projections of future atmo-
spheric states are to be analysed? the regression coefficients 
are a tool for reconstructing the surface time series – albeit 
with a variable degree of certainty for different meteoro-
logical elements, as the different correlations suggest. it also 
has to be taken into account that climate models do not cap-
ture all atmospheric fields equally well. temperature and 
geopotential do not pose major problems, but fields like hu-
midity do. thus, one must carefully study which fields are 
picked by the screening as relevant contributors to the re-
gressions to assess the degree of trust in the results. Bearing 
this in mind, the settings of regression coefficients which 
are in conjunction with extreme values can be applied to the 
climate model projections to produce proxies of surface ex-
tremes. This leads to the opportunity of studying changes in 
the frequency and magnitude of extremes. Basically, current 
climate conditions are the training set for identifying, veri-
fying and validating the connections between the large-scale 
atmosphere and the regional climate. The modelled future is 
then used as the application ground.

the method is quite flexible. in principle, any connec-
tion between a property at the surface and the large-scale 

free atmosphere state can be sorted out – provided there 
is indeed such a connection. The method can be fed, e.g., 
with a string of 0s and 1s for a sufficiently long consecu-
tive series of days which mark the non-occurrence or oc-
currence of thunderstorms, floods, air quality threats and 
so on. The correlation, i.e., the robustness of the result, 
may vary, but the fact remains that extremes are put into 
distinct classes and that they can be inferred from climate 
projection runs.

5. Summary and Outlook

a method has been presented that takes a novel look at 
structures identified in the large-scale atmosphere and 
their connection to local meteorological parameters in the 
context of forming distinct classes. the advantage of ap-
plying this method is that some of the classes it produces 
contain extreme atmospheric conditions and the adjoint 
extreme conditions at the surface. it can be thus helpful in 
terms of a way to obtain extreme cases for further studies 
– in an objective way. it can also be helpful when analys-
ing the future magnitude and frequency of extreme atmo-
spheric conditions and their consequences at the surface, 
using climate model projections.

The method does not aim at a description of average 
conditions; it has to be kept in mind that the separation of 
the predictand though the entirety of the classes which it 
generates is not optimal. This is a trade-off consequence 
unavoidable in light of the desire to efficiently focus on the 
separation of extremes.

in several examples the performance of the method to 
generate extreme classes for some relevant predictands, 
such as temperature and precipitation extremes, was shown. 
There are correlations provided which help assess the ro-
bustness of the results and thus the weight they may have for 
obtaining information on future meteorological extremes, as 
well as their inclusion in decision making processes.

The authors acknowledge that users (e.g., impact mod-
elers or decision makers) still have numerous requests and 
requirements. addressing them requires a constant and on-
going effort. This includes an improved treatment of me-
teorological extremes.
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Table 7. as in Table 4, but for the predictand “TX”, applied to all 
36 stations in hesse with their time series reshuffled in random 
order

class Members Mean Max Min Q95

1 3886 13.2 36.3 −12.3 26.8

2 2352 12.5 34.3 −11.3 26.6

3 224 14.1 36.3 −4.0 27.1

4 52 10.8 33.3 −4.0 22.4

5 334 11.8 32.5 −10.2 24.6

6 468 12.2 32.9 −9.7 26.4



36 W. Enke, A. Spekat, F. Kreienkamp

Appendix

A – Description of selected predictors and their compu-
tation from atmospheric fields

Most of the predictors listed in Table 2 are straightfor-
ward, accessible and intelligible. For a few, however, the 
necessity is felt to introduce them in a bit more detail.

A.1. Vorticity
The property used is the relative vorticity ζ in geo-

strophical approximation, computed as 2Φ ( : nabla oper-
ator and Φ: geopotential). at a grid point i, j (i in zonal and 
j in meridional direction) the vorticity is approximated by:

A.2. Frontal angle according to Margules
This property assesses the intensity of precipitation 

processes caused by dynamic lifting. it is the frontal incli-
nation angle α as described in Margules (1906):

with f: coriolis parameter; g; constant of gravity; T: Tem-
perature; ∆v and ∆T: difference of the wind velocities or 
temperature, respectively in the warm and cold air mass.

α can only be approximated and it is common to do so 
by computing the angle γ instead:

in the 850 hPa level with ∆x' Tv denoting the jump in the 
virtual temperature.

A.3. Lability Index after Showalter
this index, first devised in showalter (1947), extracts 

lability information from temperature and humidity in 850 
and 500 hPa:

with T500: temperature in 500 hPa and TP500: modified pseu-
dopotential temperature, assuming that an air parcel is 
lifted dry-adiabatically from 850 hPa to its condensation 
level and then is lifted further in a wet-adiabatical way.

A.4. Lability Index according to Enke
this index, first described in Deutschläender and enke 

(2004), evaluates geopotential information from 1000, 700 
and 500 hPa: 

with ∆vT: vertical temperature difference and ∆Tf,v: wet-

adiabatical vertical temperature gradient. it requires com-
puting:

with ∆z: height difference and:

with:

with p: air pressure; a and b: empirical constants according 
to linke and Baur (1970) and:

with T̄ v: virtual temperature; R: gas constant.
the layers of 850 and 600 hPa are chosen to approxi-

mate the middle of the 1000/700 and the 700/500 level, 
respectively.

A.5. Advection of temperature and relative humidity
The horizontal transport (advection) of, e.g., tempera-

ture A(T) is expressed by:

with v h→: wind in geostrophical approximation according to 
the thermal wind equation in Subsection a.7 below.

The advection of absolute humidity (using psychromet-
rical standard tables/formulae) is determined in an analo-
gous way.

A.6. Advection indicator
This is a dichotomous parameter which yields a posi-

tive value in the case of warm air advection and a negative 
value in the case of cold air advection.

A.7. Thermal wind
the thermal wind expresses the height-dependent 

change of the geostrophical wind v g→. it requires the com-
putation of the horizontal components of the temperature 
gradient ug and vg – the vertical component of the tempera-
ture gradient is approximated to 0. We have:

with f: coriolis parameter; k
→

: vertical unit vector and Φ: 
geopotential.

The u- and v-components of the thermal wind are com-
puted by:

ζi,j = −4 · Φi,j +  Φi,j-1 + Φi,j+1 + Φi+1,j

tan α = · T · 
f ∆v 
g ∆T 

γ' = · Tv · 
f ∆z vy

g ∆x' Tv 

SIS = T500 − TP500

SIE = ∆Tf,v − ∆vT

∆Tf,v = Tf,v 850 − (T850 − γf · ∆z)

γf = ( )
f
 = 0.973 β [ ];  β = 

dT K p + a
dz 100m p + b 

∆Tf = Tf850 − (T850 − γf · ∆z)

∆z = z600 − z850 = T̄ v · ln( )R 850
g 600

A(T) = − v h→ · h T

 v g→ = 
1
f

 k
→

 × 
→

p Φ

ug = − ( )
p

1 ∂Φ
f ∂y

vg = − ( )
p

1 ∂Φ
f ∂x

and
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A.8 .Pseudopotential temperature
The pseudopotential temperature describes the amount 

of latent heat included in an air parcel, i.e., its humidi-
ty content. it is based on the principle that a parcel with  
a (not yet condensated) amount of humidity is lifted to its 
condensation level – meaning that it is saturated. subse-
quently, wet-adiabatical lifting takes place and the released 
condensation heat is added to the parcel’s temperature. now 
devoid of water vapour, the parcel is transported down to 
the reference level of 1000 hPa. The pseudopotential tem-
perature is computed as follows:

with T0: initial temperature; P0: initial air pressure; RL: gas 
constant for dry air; cp: specific heat capacity keeping pres-
sure constant. 

A.9. Isallobaric wind
This is a “conceptual motion” in which areas of con-

stant change of air pressure over time are determined, e.g., 
in the course of 24 hours. then a balance flow is com-
puted which moves across the isopleths of the air pres-
sure change (another name is the Brunt-douglas isallo-
baric wind, c.f. Glickman, 2000) – in physical terms this is  
a flow that occurs under the conditions of a balance be-
tween coriolis Force and geostrophic wind.

A.10. Sum predictor
The rationale behind the sum predictor is that there 

may be cumulative or residual properties of the atmo-
sphere “hidden” in the considered fields, yet accessible 
through an aggregated approach. to this end, all fields in 
table 2 – except nos. 26 to 29 and 58 to 60 – were nor-
malised and composites were formed. as it turned out, this 
sum predictor is rather frequently selected in the screening 
regression procedure (cf. Section 3.1).

B – Reconstruction of a predictand by way of regression
in this example, the daily maximum temperature in the 

summer season (June-august) for a subgroup of lowland 
stations has been used as the predictand. The screening 
yielded the following predictors (in order of relevance): (i) 
relative topography 1000/500 hPa at field co-ordinate 
[10;10], i.e. in the centre of the field with a regression  
coefficient of 0.2500; (ii) Vorticity 850 hPa at field co- 
ordinate [13,9], i.e. displaced to the northwest with a re-
gression coefficient of –0.0034; (iii) absolute humidity 
850 hPa at field co-ordinate [11,10], i.e. almost at the cen-
tre of the field with a regression coefficient of −0.6021 and 
(iv) Geopotential 700 hPa at field co-ordinate [19,4], i.e. 

displaced to the northwest with a regression coefficient of 
0.0050. Moreover, the constant term of the regression 
equation was determined to be −331.4254. Please note that 
the predictors mentioned above are not exactly the same as 
those given in the TX part of Table 3. The reason is that the 
tabulated predictors have been culled from analyses of dif-
ferent seasons and half-years and therefore represent the 
overall relevant conditions.

applying the above coefficients to the values of the four 
different fields as they occurred on a particular day yielded 
the following relation:

The true TX, as it occurred on that particular day, was 
23.2°c. Thus the regression did not yield a perfect repro-
duction of TX but an approximation with a residual error of 
0,9k. when the regression equation is applied to a succes-
sion of days, the single residual errors vary in magnitude 
and sign; however, they almost compensate each other.
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