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The use of kernel estimators to determine the distribution of groundwater level
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Abstract. In this paper the problem of non-parametric estimation of the probability density function for hydrological 
data is considered. For a given random sample X1, X2, ..., Xn we define an estimator f̂ n of the density function ƒ based 
on a function K of a real variable – the so-called kernel of a distribution – and a properly chosen number sequence 
{hn} from the interval (0, ∞). This estimator of density function of a random variable X under more general assump-
tions is known in the statistical literature as the Parzen-Rosenblatt estimator or the kernel estimator. The method of 
kernel estimation presented in the paper has been applied to determine the probability distribution of the groundwater 
level based on long-term measurements made in the melioration research carried out at the foothill object Długopole.
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1.	 Introduction

In many meteorological and hydrological studies, 
knowledge of the density function ƒ of the probability dis-
tribution of features (random variables) describing the 
model of the phenomenon allows the determination of the 
probability of observing the values of these features from 
a given interval [a, b] according to the formula:

There are numerous examples of the many applications 
of parametric probability distributions for modeling hy-
drological phenomena (e.g. river flow models, or as in 
Kuchar et al. 2014) or meteorological phenomena (e.g. 
models of atmospheric precipitation, cf Kuchar 2004), 
among which there are: lognormal distribution, two-pa-
rameter gamma and beta distributions and generalized 
gamma distributions (with three parameters). Due to the 
specific nature of meteorological and hydrological data, 
the empirical probability distribution determined on the 
basis of a set of recorded values of given feature X, often 
shows a large divergence in comparison with known prob-
ability distributions. This fact is confirmed by statistical 
analysis using different statistical tests of hypotheses con-
cerning the verification of the consistency between the em-
pirical distribution of the sample and the hypothetical 
theoretical distribution. Among the many known methods 
for estimation of the probability density function ƒ, an  
often used method is so-called non-parametric kernel esti-
mation.

An important element of this method is the use of a func-
tion K (∙) of a real variable, called the kernel of a distribution, 
which satisfies the following condition:

Next, for a given random sample X1, X2, …, Xn we 
define an estimator f̂ n of the density function ƒ for each 
x ϵ R, as follows:

where {hn} is a properly chosen number sequence from the 
interval (0, ∞).

The estimator of density function of a random variable 
X given by (2) under more general assumptions is called 
in the statistical literature the Parzen-Rosenblatt estimator 
or the kernel estimator.

Using the results given by Parzen (1962), Rosenblatt 
(1956) and by Van Ryzin (1969), we can choose a se-
quence {hn} and a function K, so that the sequence of esti-
mates{ f̂ n}is convergent with the probability 1 to the un-
known estimated density function ƒ as n tends to infinity. 
This method of kernel estimation has been applied to de-
termine the probability distribution of the groundwater 
level based on long-term measurements made in the me-
lioration research carried out at the foothill object 
Długopole (Gąsiorek et al. 1990).
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2.	 Material and methods

The experiment considered in this article was carried 
out on the object melioration located in Długopole Zdrój 
(surface area of about 1.5 hectares) in the district of 
Kłodzko in the Sudety Mountains, Poland. The district of 
Kłodzko is characterized by a moderate and mild climate 
that is favorable for farming and animal breeding, as well 
as tourism in its various forms. Its characteristic weather is 
mild winters and slightly cooler summers than in the cen-
tral part of the Poland. Monthly mean temperatures [in oC] 
in the study period (April-September, years 1978-1981) 
were, consecutively: 5.3, 11.3, 15.3, 14.7, 15.2 and 12.0, 
while the monthly precipitation totals [in mm] were, re-
spectively: 58.3, 40.3, 88.5, 149.0, 83.8, and 86.6. The me-
lioration study on the foothill object Długopole performed 
long-term groundwater level measurements using properly 
installed piezometers (hydrogeological observation holes). 
Daily registered groundwater levels were averaged, based 
on measurements from a dozen or so piezometers suitably 
located at the research station (the experimental data are 
derived from the Institute of Agricultural and Forest Im-
provement, cf Gąsiorek et al. 1990). The main objective of 
this experiment was to determine the probability distribu-
tion of the groundwater level within the fixed period of 
vegetation (from April to September), and then estimation 
on the basis of the distribution of the average number of 
days for a given level of ground water. The data set in-
cludes the groundwater level measurements listed in rows 
for specified ranges of levels from 10 to 150 cm every  
10 cm (variables p1 to p14) (Table 1). Two experimental 
years, 1978 and 1979, were very similar in terms of  
weather conditions and their impact on the size of the run-
off and ground water level was also similar. Based on 
these data, the frequency histogram of the groundwater 
level was drawn up (Fig. 1). The empirical distribution is 
the basis for further, more advanced numerical analysis.

Let us consider an i.i.d. (independent identically dis-
tributed) sample X1, X2, ..., Xn drawn from a univariate 
density ƒ, and estimate f̂ n given by (2), where K is the ker-
nel (a real function integrating to one, see (1)), and h > 0 is 
the smoothing factor (Akaike 1954; Rosenblatt 1956; Par-
zen 1962). The fundamental problem in kernel density es-
timation is that of the joint choice of h and K in the absence 
of a priori information regarding ƒ. Watson and Leadbetter 
(1963) show that the choice of h and K should not be split 
into two independent subproblems. Also, the choice of K 
largely depends upon the smoothness of ƒ (Devroye 1992). 
Additionally, we require that the function K is subject to 
certain conditions of regularity (inter alia, differentiability 
and integrability). As a result of the condition (1) we have:

and f̂ n satisfies the same conditions of regularities that we 
superimpose on K. As a kernel K is often assumed density 
function of the normal distribution N (0, 1) or the density 
with variance σ2, i.e. the distribution N (0, σ2). The main 
problem in issues of kernel estimation of a density function 
is the optimal choice of the bandwidth h and the kernel K, at 
which integrated over the mean square error of the kernel 
estimator  would be the lowest for any estimated density, 
and this means that we are looking for a minimum of risk 
function as follows:

while h is the width of the window smoothing and K a real 
function (see e.g. (2)).

Although we know that there are no such values of  
h and K for which the minimum given by (3) is realized, 
this analysis of the integrated mean square error for large 
samples provides useful guidelines in practice. Let us as-
sume that we estimate the density ƒ twice differentiable, 
for which ∫(ƒ''(x))2dx < ∞. Then the asymptotically optimal 
choice (with n → ∞) of kernel K in a class of symmetric 
functions and integral in a square is given by the following 
formula:

It is proved that in the class of the estimated functions, 
the optimal choice of bandwidth h, asymptotically ob-
tained, expresses the formula (5). From equation (5) it fol-
lows that the optimal bandwidth h depends on the kernel 
K and, unfortunately, on the unknown density ƒ. However, 

Fig. 1. The empirical probability distribution of groundwater 
level [cm]
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Table 1. The values of the groundwater level [in cm] with frequency distribution (years: 1978-1979, months: April-
September, min = 15 cm, max = 142 cm, total days = 366)

Variable Interval of 
variability 

Number of 
days The values of the groundwater level [cm]

p1 [10; 20] 1 15  

p2 (20; 30] 7 28 25 23 26 22 29 29  

p3 (30; 40] 20
31 38 37 38 33 39 37 39 35 39 38 34 37

32 34 36 37 31 35 33  

p4 (40; 50] 23
42 45 49 43 48 46 46 44 41 47 48 45 49

42 50 41 45 45 49 43 46 46 50  

p5 (50; 60] 26
60 52 57 55 53 60 59 54 51 53 57 60 58

58 56 57 57 53 55 51 52 59 51 59 54 53

p6 (60; 70] 21
66 62 68 67 65 63 70 62 65 65 64 69 65

64 66 65 69 64 67 61 62          

p7 (70 ; 80] 30

76 74 73 79 74 77 71 74 73 76 72 75 74

74 72 73 77 76 72 74 77 78 79 72 78 76

76 73 76 75  

p8 (80; 90] 50

83 82 82 84 90 88 81 90 81 86 85 89 84

86 89 86 84 83 87 89 85 83 82 83 85 84

87 83 82 84 84 89 81 82 87 86 87 88 85

90 88 81 88 87 82 81 85 87 86 88    

p9 (90; 100] 23
91 99 97 94 95 96 100 96 93 95 97 92 94

100 98 94 95 100 97 91 95 95 92      

p10 (100; 110] 46

101 101 101 101 101 102 102 102 102 102 103 103 103

104 104 105 105 105 105 105 105 105 105 105 105 106

106 106 107 108 109 109 110 110 110 110 110 110 110

104 104 104 106 106 106 110  

p11 (110; 120] 44

111 111 111 112 112 112 112 112 112 112 112 113 113

115 115 115 115 115 115 115 115 115 115 115 115 115

114 114 114 116 117 117 118 119 119 120 120 120 120

120 120 120 120 120  

p12 (120; 130] 37

121 121 121 121 122 122 122 123 123 123 123 123 123

124 124 124 125 125 125 125 125 125 125 126 127 127

128 128 128 130 130 124 124 124 128 128 128  

p13 (130; 140] 28

131 131 132 132 133 133 133 133 133 133 133 134 134

135 135 135 135 135 136 136 137 138 139 139 140 135

135 135  

p14 (140; 150] 10 141 141 142 142 142 142 142 142 142 142      

if we consider a sufficiently “rich” family density, e.g. the 
density of the normal distribution with variance σ2, and for 
the kernel K we take the density of the standard normal 
distribution, then we get:

and after consideration of this in (5) we obtain for band-
width h = (4/3)1/5σn−1/5 ≈ 1.06σn−1/5.

If you use a function Ke given by (4) as the kernel then 
we obtain ∫t2K(t)dt = 1 and ∫K2(t)dt ≈ 0.27, and after taking 
into account these results in (5) for c we obtain that h ≈ 
1.05σn−1/5 (see Gajek, Kałuszka 1994). It is thus seen that 
the use of the Gaussian kernel leads to practically the same 
optimum bandwidth. The study of the asymptotic mean 
square error indicates that the use of a Gaussian kernel in-
stead of the optimal Ke leads to an increase in the error of 
just a few percent. Therefore, in our further statistical anal-
ysis, we used the Gaussian kernel with variance σ2. Now, 
let hn = (√n)−1

 and the kernel K be a density function of the 
normal distribution N(0, σ2), i.e.:

(5)

(6)

h = cn−1/5,

where c = {∫t2K(t)dt}−2/5
 {∫K2(t)dt}1/5

 {∫[f ''(x)]2
dx}−1/5

∫[f ''(x)]2
dx = 

3
8

�−1/2σ−5, ∫t 2K(t)dt = 1, ∫K2(t)dt = 0.5�−1/2
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then the estimator given by (2) has the following form:

where σ > 0 can play the role of the smoothing parameter in 
finding the optimum width of the smoothing window h, as 
a function of the number of observations n and parameter 
σ (e.g. in Gajek, Kałuszka (1994) we have h ≈ 1.06σn−1/5 
or h ≈ 1.05σn−1/5).

The fundamental argument for using kernel estimators 
in practice is its unusually important property of strong 
consistency expressed by the condition of the uniform 
convergence of estimators f̂ n to an unknown density func-
tion ƒ, i.e.: 

Remarks (cf Wegman 1972):
1.1.	The condition (8) holds for a very large class of ker-

nels in real space R if ƒ is uniformly continuous (the 
result proved by Schuster 1969).

1.2.	If both ƒ and a kernel K are continuous, then it is easy 
to see that (8) defines a random variable for all n.

1.3.	If ƒ is a uniformly continuous density and K is a den-
sity of bounded variation that satisfies lim |x| ∙ K(x) = 
0, and if hn→0 and n ∙ h2

n/log n →∞ then the 
condition (8) holds in real space R (the result proved 
by Naradaya 1965).

For the sake of completeness, we state the following 
well-known results:

Theorem 2.1 (Naradaya 1965)
If a kernel K is a density on a space Rm(m ≥ 1) and  

ƒ is a uniformly continuous density for the Lebesgue 
measure, then sup|E{ f̂ n(x)} − ƒ(x)|→0 provided that  
hn→0. (This condition determines the so-called as-
ymptotic unbiasedness).

Theorem 2.2 (Devroye, Wagner 1976)
If a real function K satisfies the following conditions:

(i)	 K is a probability density on a space Rm(m ≥ 1),
(ii)	 sup K(x) < ∞,
(iii)	K has compact support, i.e. there exists a ρ > 0 such 

that    ∫    K(x)dx = 1,
(iv)	the closure of the set of discontinuities of K has Leb-

esgue measure 0,
(v)	 hn→0,
(vi)	hm

n ∙ n/log n→∞,
(vii)ƒ is a uniformly continuous density for the Lebesgue mea-

sure μ, then { f̂ n} is a strongly uniformly consistent for μ.

3.	 Results

Based on the empirical data of the groundwater level 
shown in Table 1, and presented in Figure 1 as the frequen-
cy histogram, analytically and numerically density func-
tion estimates were determined according to the method 
described in Chapter 2. For different values of the smooth-
ing parameter σ (in the computations, parameter σ ran the 
interval [0.4; 10] with a step 0.2) the more or less smooth 
estimated density function f̂ n can be obtained (for selected 
values of the parameter σ we show: for σ = 5 see Fig. 2, for  
σ = 7 see Fig. 3 and for σ = 10 see Fig. 4).

An additional criterion for assessing the effectiveness 
(goodness of fit) of estimators can be to maximize the 
probability Pr as follows:

Oi and Ei are the observed and the expected values for the 
i-th class of analyzed variable (i = 1,…, k), respectively 
and χ2

k is a random variable that has a central chi-squared 
distribution with k degrees of freedom. It is worth noting 
the expected values Ei = n · pi, where n is the total number 
of observations (in our case n = 366 days) and pi expresses 
the probability for the i-th variation interval for i = 1,…, k. 
(in our case k = 14). For the chosen values of smoothing 
parameter σ  we received appropriate p-values  for the test 
statistic χ2 given by formula (9), and so, for σ = 5, 7 and 10 
we have Pr{χ2

13 > 5.89} ≈ 0.95, Pr{χ2
13 > 6.32} ≈ 0.94 and 

Pr{χ2
13 > 6.18} ≈ 0.934, respectively.

4.	 Discussion

The results obtained confirm the high usefulness of the 
method of kernel estimation to determine the probability 
distribution of the groundwater level and to estimate the 
most probable number of days for a given level of ground-

K(x) =  exp( )−x2

2σ2

1
√2�σ

f̂ n(x) =  ∑exp( )−(Xi − x)2n
2σ2

1
√2�nσ

n
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(8)sup | f̂ n(x) − ƒ(x)|→0 with probability 1n → ∞x

|x|→∞
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x

x
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Fig. 2. Frequency histogram for the source data of groundwater 
with estimated density function (the smoothing parameter σ = 5)
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water in the studied vegetation period at a melioration ob-
ject (in our case at the foothill object Długopole ). For ex-
ample, for values of the groundwater level in the range 
70-90 cm, on the basis of long-term measurements, the 
predicted (expected) number of days is 77 for the estimat-
ed density function with smoothing parameters σ = 5 and  
σ = 7(Pr{x ϵ [70, 90]} ≈ 0.21), and 73 days when we use 
the estimator f̂ n with smoothing parameter σ = 10(Pr{x ϵ [70, 
90]} ≈ 0.20), while the observed number of days for this 
interval was 80. As an alternative for choosing the smooth-
ing factor h in the Akaike-Parzen-Rosenblatt density esti-
mate, Devroye (1989) introduced the double kernel esti-
mate and its usefulness was demonstrated in extensive 
simulation studies in Berlinet and Devroye (1994). Among 
the publications on the problems of estimating the un-
known density function, one should consider monograph 
by Silverman (1986), in which the author gives several 
proposals for choosing the window width. Another impor-
tant but much more difficult approach to the problem of 
stochastic modeling of hydrological or meteorological 
data is to use methods of multivariate density function es-
timation (see Scott 1992). In our problem, we can consider 
simultaneously with the level of groundwater both the 
quantity of precipitation and mean daily temperatures.
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