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Abstract. A System for the Estimation and Nowcasting of Precipitation (SEiNO) is being developed at the Institute of 
Meteorology and Water Management – National Research Institute. Its aim is to provide the national meteorological 
and hydrological service with comprehensive operational tools for real-time high-resolution analyses and forecasts 
of precipitation fields. The system consists of numerical models for: (i) precipitation field analysis (estimation),  
(ii) precipitation nowcasting, i.e., extrapolation forecasting for short lead times, (iii) generation of probabilistic 
nowcasts. The precipitation estimation is performed by the conditional merging of information from telemetric rain 
gauges, the weather radar network, and the Meteosat satellite, employing quantitative quality information (quality 
index). Nowcasts are generated by three numerical models, employing various approaches to take account of different 
aspects of convective phenomena. Probabilistic forecasts are computed based on the investigation of deterministic 
forecast reliability determined in real time. Some elements of the SEiNO system are still under development and the 
system will be modernized continuously to reflect the progress in measurement techniques and advanced methods of 
meteorological data processing.
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1.	 Introduction

A quantitative precipitation estimate (QPE) provides 
basic information for the modelling of many kinds of 
hydro-meteorological processes, e.g. as input to rainfall-
runoff models for flash flood forecasting. It is assumed 
that especially in small and urbanized catchments a spatial 
resolution of all precipitation data: i.e., analyses (QPE) 
and forecasts, should be at least 1 km with 5-10 min fre-
quency, or even values of 0,1 km and 1 min are suggested 
as optimum (Ten Veldhuis et al. 2014). In order to meet 
these requirements, weather radar observations are crucial 
because of their very high spatial resolution. Additional 
sources of diverse data, such as telemetric rain gauges and 
satellite observations, are also included in the QPE. How-
ever, the data are characterized by different temporal and 
spatial error structures. Therefore, a combination of the 
data should be based on quality information determined 
quantitatively for each input to take advantage of a par-
ticular source of precipitation measurements (Berndt et al. 
2014; Szturc et al. 2014).

The next step is precipitation nowcasting, i.e., forecast-
ing with a very short lead time – approximately up to 2 hours 
– and applying a linear extrapolation approach by means of 
advection of a precipitation field; as well as this, the field 
evolution is often taken into consideration. Nowcasting for 
longer lead times is not reliable because the precipitation 

field evolution is difficult to predict and the real vector field 
describing the movement of convective cloud structures 
is not very stable in time. A brief review of contemporary 
nowcasting models can be found in, e.g., Mecklenburg et al. 
(2005) and Pierce et al. (2012). At the Institute of Meteorol-
ogy and Water Management – National Research Institute 
(in Polish: Instytut Meteorologii i Gospodarki Wodnej 
– Państwowy Instytut Badawczy, hereafter: IMGW-PIB) 
presently two nowcasting systems are implemented in the 
operational mode: the INCA system developed by the Aus-
trian national meteorological service ZAMG (Haiden et al. 
2011; Kann et al. 2012) and the precipitation model SCENE 
(Storm Cell Evolution and Nowcasting) systems developed 
at IMGW-PIB. Another nowcasting model, the SNOF 
(Spectral Nowcasting with Optical Flow), is currently being 
developed at the IMGW-PIB.

Moreover, in order to improve nowcasting skill, 
mesoscale numerical weather prediction (NWP) models 
which deliver forecasts with a longer time horizon are also 
employed. In Poland the COSMO and AROME models 
are operated at the IMGW-PIB. The NWP models are 
successful in providing short- and medium-range meso-
scale forecasts at the resolution above 2 km. In the cases 
of convective phenomena triggered by local atmospheric 
conditions at a very small spatial scale, the NWP models 
may not allow for the forecasting of precipitation events 
with sufficient accuracy in terms of rainfall quantity and 
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spatial locality (Silvestro et al. 2015). In the forecasting of 
small-scale severe events, nowcasting models are success-
ful in terms of their tracking, whereas the NWP forecasts 
are found useful in supplementing the nowcasts with ob-
ject evolution, especially for lead times longer than about 
2 hours (see Fig. 5) (Golding 1998; Atencia et al. 2010).

The IMGW-PIB, as the Polish national meteorological 
and hydrological service, operates a number of tools for 
precipitation data generation, processing, nowcasting and 
forecasting. All the systems need a common algorithmic 
and informatics framework for the effective management 
of precipitation data along the following chain: from quan-
titative precipitation estimation through nowcasting (fore-
casting) up to merging with ultra short-term forecasting 
and the generation of probabilistic forecasts. In order to 
handle these tasks, the SEiNO system (System of Estima-
tion and Nowcasting of Precipitation, in Polish: System 
Estymacji i Nowcastingu Opadów) has been designed to 
introduce improvements in already operational models 
and sub-systems, as well as to initiate research work on 
missing modules.

The most significant and innovative characteristic of 
the system, in comparison with similar systems working 
operationally in other European national meteorological 
services, is the utilization of quantitative quality informa-
tion which propagates from the observations to the final 
products, such as precipitation estimates and forecasts. 
The quality information is especially crucial in modules 
for multi-source data combination and multi-model fore-
cast merging, and also constitutes a basis for the genera-
tion of probabilistic forecasts.

This paper is organized as follows. After the introduc-
tion in Section 1, the SEiNO system is described gener-
ally in Section 2 in terms of its structure and input data. 
In Section 3, algorithms for multi-source QPE generation 
are briefly presented. In Section 4, deterministic precipita-
tion nowcasting is described. In Section 5, ultra short-term 
forecasting from NWP models is described. Post-process-
ing of the nowcasts and forecasts, including their merging 
and subsequent generation of probabilistic forecasts, are 
described in Section 6. The last section, Section 7, con-
tains a summary of the paper.

2.	 The SEiNO system
2.1.	Overall description

The tasks of the estimation and forecasting of precipi-
tation fields with high temporal and spatial resolutions are 
performed by the SEiNO system, which is being developed 
and implemented at the IMGW-PIB. The general goal  
of SEiNO is to generate:

•	 analyses of precipitation fields based on data from 
various available measurement systems;

•	 precipitation nowcasts, combined with the forecasts  
of the NWP mesoscale models;

•	 probabilistic forecasts.
Currently, all the precipitation data processed by  

the system are 10-min accumulations with temporal and 
spatial resolutions of 10 min and 1 km, respectively.

Apart from the precipitation input, a basis for all  
algorithms implemented in the SEiNO system constitutes 
information about precipitation quality. The quality infor-
mation is generated at each stage of the data processing in 
the form of fields of dimensionless quantity named quality 
index, QI (Einfalt et al. 2010), normalized to the range 
[0, 1]. Generally, the methodology of the QI estimation is 
not unambiguous as it is difficult to determine all sources  
of uncertainty and their impact quantitatively, therefore  
a significant part of the scheme of the QI determination 
must be arbitrary. Despite these difficulties, the QI values 
make a very convenient and effective quality metric.

The computational domain of the size 900 km × 800 km 
in the PUWG 92 coordination system covers the whole of 
the territory of Poland (Figs. 2 and 3). As the data format for 
precipitation fields, the HDF5 format has been established 
with the RainDIM information model based on the ODIM 
model introduced by the EUMETNET OPERA program for 
weather radar data (Michelson et al. 2014). Applications of 
the system have been developed mostly in ANSI C and run 
on the Linux CentOS 6.5 (64-bit) operational system.

2.2.	Structure of the SEiNO

The SEiNO is able: (i) to provide high quality input 
data required for hydrological rainfall-runoff models 
(Tokarczyk et al. 2016), (ii) to track rapidly changing 
meteorological phenomena at a small spatial scale (as the 
forecasting cycle is 10 min and the spatial resolution is 
1 km), and (iii) to predict their evolution for longer time 
periods (the lead time is up to 4 hours). In figure 1 a block 
diagram of the SEiNO system is depicted.

The SEiNO system includes modules which perform 
the following tasks:
•	 RainGRS – quality control, processing of particular 

precipitation inputs, and generation of multi-source 
precipitation GRS fields;

•	 INCA-PL2; SCENE; SNOF – nowcasting of precipita-
tion fields (quantitative precipitation nowcast, QPN);

•	 MERGE – merging of nowcasts and ultra short-term 
NWP forecasts (quantitative precipitation forecast, QPF);

•	 ENSEMBLE, PROB – generation of probabilistic 
forecasts (probabilistic QPF, PQPF);
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•	 auxiliary tasks: generation of reliability statistics 
(METRICS), precipitation accumulation (SUM).
Moreover, the system is equipped with a graphical 

user interface which provides forecasters at IMGW-PIB 
(meteorologists and hydrologists) with visualizations  
of the results.

2.3.	Input data

The SEiNO system processes a variety of precipitation 
data from the measurement systems described below to 
employ them in the generation of analyses and forecasts 
of precipitation fields.

TELEMETRIC RAIN GAUGE NETWORK
The network consists of 491 gauges (Fig. 2). Each of 

them is equipped with two sensors: a heated sensor (which 
works during the winter) and an unheated one. The data are 
subject to automatic quality control procedures in SEiNO, 
which mainly consist of: (i) a range check based on cli-
matological values, (ii) analysis of the spatial consistency 
of gauge data, (ii) analysis of the temporal consistency 
of the data, and (iv) verification with other measuring 
techniques, i.e., weather radars and satellite (Szturc et al. 
2014). After the quality control, the gauge data are spatially 
interpolated with the use of the inverse distance weighting 
technique or a Kriging method to obtain a high-resolution 
precipitation field. Relevant QI values for each pixel of  
a domain are generated from qualities of individual gauge 
measurements and a factor related to the distance to the 
nearest gauge.

POLISH WEATHER RADAR NETWORK POLRAD
At present the network consists of eight C-band Doppler 

radars manufactured by Selex ES, including three radars 
with dual-polarized beam. The POLRAD network covers 
nearly the whole area of Poland, with a 250-km range of 
observations. In the south of the domain, the POLRAD 
data are supplemented with radar data from neighbouring 
countries: Lithuania (2 radars), Ukraine (1), Slovakia (4), 
Czech Republic (2),  and  Germany (3) – all of them are 
Doppler and dual-polarized (Fig. 3). They significantly im-
prove the range of measurements in this area where, due to 
mountains, radar beam propagation is limited. The Rainbow 
system from Selex ES is employed for the data processing. 

The weather radar measurements are burdened with 
many kinds of errors. These can be divided into a few 
groups (Villarini, Krajewski 2010). The first group is 
connected with radar beam geometry and includes effects 
related to the distance from a radar site, like the beam 
broadening. The next group, which influences the radar 
estimates in the highest degree in practice, is related to 
the presence of non-meteorological echoes, mainly caused 
by ground clutter, external signals from, e.g., RLAN emit-
ters, measurement noise (speckles), and biological echoes 
from birds or insects. Moreover, errors can be caused by 
attenuation in heavy rain, anomalous propagation of the 
radar beam, and beam blockage on terrain which decreases 
signal strength, as well as by hardware instability. This 
quality control is performed by the RADVOL-QC system 
(Ośródka et al. 2014) on 3D raw data (volumes), which 
also produces QI fields.

Having the corrected 3D data, a number of 2D products 
may be generated, such as SRI (surface rainfall intensity), 
i.e., cross section at a constant height above the ground, 
and then PAC (precipitation accumulation) products can 

Fig. 1. Simplified scheme of precipitation estimation and now-
casting at IMGW-PIB

Fig. 2. Deployment of measurement network of telemetric rain 
gauge stations
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also be generated. The 10-min PAC products from particu-
lar radars are merged into composite maps using relevant 
QI fields as the criteria.

METEOSAT METEOROLOGICAL SATELLITES
The data from SEVIRI radiometers on board Meteosats 

provide information in visible and infrared channels, which 
is not optimal for precipitation estimation. However, after 
processing with algorithms from the NWC SAF program, 
which also employ data from the NWP model, the data 
constitute a valuable complement to other systems because 
of their high availability and the fact there are no limita-
tions in spatial range (NWC SAF 2013). For the SEiNO 
system, a dedicated algorithm for quantitative precipitation 
estimation which combines several NWC SAF products 
has been developed (Szturc et al. 2014). Relevant quality 
fields QI are also determined by the algorithm. The data 
are available in a spatial resolution of about 5 km × 6 km,  
so they are downscaled into 1 km × 1 km pixels. Their 
temporal resolution is 5 or 15 min depending on the mode 
(rapid or standard), thus estimation of 10-min accumula-
tions is necessary.

3.	 Estimation of precipitation field (QPE)

The task of the estimation of precipitation fields on the 
ground (QPE) as input data for precipitation nowcasting is 
carried out by the RainGRS module of the SEiNO system. 
The module merges precipitation data from the measure-
ment techniques listed in Sect. 2.3.

The combination of the multi-source data is based on 
conditional merging (Sinclair, Pegram 2005), addition-
ally applying information about the data quality. In this 
approach, the information from a radar is used to obtain 
the correct spatial structure of the precipitation field, 
while the field values are fitted to the rain gauge observa-
tions. First, spatial interpolation of rain gauge data into the  
Gint field is performed. Next, uncertainty of the interpolation 
is assessed from a comparison between the radar field R and 
the radar field interpolated from data in rain gauge locations 
Rint. Finally, spatially interpolated rain gauge data Gint is cor-
rected by these differences (R – Rint) to obtain a gauge field 
modified by radar information RG according to the formula:

where Gint is the spatially interpolated rain gauge field;  
R is the radar precipitation; Rint is the radar precipitation 
interpolated from data in rain gauge locations.

Subsequently, the resulting precipitation field RG is 
merged with radar data R to obtain the combined gauge-
radar GR field from the formula (Szturc et al. 2014):

where QIG and QIR are the quality indices for gauge and 
radar, respectively. A combined gauge-satellite field GS 
is obtained analogically to the above procedure, but the 
satellite data S and relevant quality fields QIS are taken.

Finally, the two fields are combined into the gauge-
radar-satellite (GRS) precipitation field forming the final 
QPE by means of the weighting formula:

where the QId is the quality factor of radar data related to 
the distance to the nearest radar site.

The quality index field QIGRS for the combined GRS 
precipitation is determined as a mean from particular QIG, 
QIR, and QIS values with weights deduced from reliabili-
ties of particular input fields.

4.	 Nowcasting of the precipitation field (QPN)
4.1.	General description

Generally, nowcasting of precipitation can be described 
as a transformation of the precipitation field performed 
with its advection and physical evolution taken into  
account, according to the formula:

Fig. 3. Deployment of POLRAD weather radar network comple-
mented with radars from neighbouring countries. Radar ranges 
are marked within a radius of 250 km, the darker colour marks 
radars with dual polarization of beam

RG = Gint + (R – Rint) (1)

(2)

(3)

RG ∙ QIG + R ∙ QIR

QIG + QIR
GR = 

GRS = 
GR ∙ QId  + GS ∙ (1 – QId) ∙ QIS

QId  +  (1 – QId) ∙ QIS
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where R is the 10-min precipitation accumulation; t0 is the 
time when the nowcast is generated; Δt is the nowcast lead 
time; x is the position of a given pixel; Δx is the change 
of the pixel position during the forecast lead time; ΔR is 
the change of the precipitation intensity (accumulation) 
encountered during the field evolution.

Extrapolation vectors Δx for nowcasting are deter-
mined by finding such movement between two subsequent 
QPE fields for which the correlation coefficient is the 
highest (Mecklenburg et al. 2005). This vector field is 
subject to quality control through either verification with 
neighbouring vectors or by using a variational technique 
with a continuity equation as a constraint (Li et al. 1995).

Most often for the advection of a precipitation field  
a semi-Lagrangian backward scheme (e.g. Germann,  
Zawadzki 2002) is applied. In this scheme the field dis-
placement is described for each pixel in a Lagrange space 
and the total movement vector Δx during time period 
Δt is deduced from vectors for relevant time steps. The 
movement vectors differ between consecutive time steps 
as the individual vector is associated with a pixel shifted 
to a given location moving upstream in each time step, 
therefore this scheme allows for the changeability of vec-
tor field to be taken into account – e.g. due to rotation.

Simpler nowcasting models are focused only on the 
determination of the movement vectors, and neglect the 
evolution of the precipitation field ΔR. However, at present 
more advanced models take this factor into consideration, 
which enables the lead time of forecasts to be lengthened 
without significant deterioration in terms of their reli-
ability. The classic TITAN model (Dixon, Wiener 1993) 
employs a linear trend of evolution, while the GANDOLF 
model applies an empirical model of a convective cell life-
cycle (Pierce et al. 2000). A similar approach is employed 
in the SCENE model that forms part of the SEiNO system 
– this introduces dedicated lifecycle models for different 

types of convective cells. A different concept is used in 
the STEPS model (Bowler et al. 2006), in which a second-
order autoregressive scheme AR is employed to generate 
forecasts. A similar solution is applied in the SNOF model 
currently also being developed within the frame of SEiNO.

4.2.	Nowcasting models in SEiNO

INCA-PL2 is an adapted INCA (Integrated Nowcast-
ing through Comprehensive Analysis) model of meteo-
rological nowcasting developed by the Austrian national 
meteorological service ZAMG (Haiden et al. 2011; Kann 
et al. 2012). The Polish version, named INCA-PL, was 
developed in 2010-2013 within the frame of the European 
project INCA-CE (Interreg program). Since 2015 a ver-
sion named INCA-PL2 has been operationally applied at 
IMGW-PIB. The model generates nowcasts of the main 
meteorological fields, including precipitation, type of 
precipitation, temperature, wind speed and direction, pres-
sure, etc. In the case of precipitation it is an extrapolation 
model: nowcasts are obtained by advection defined by  
a movement vector field determined using a cross-correla-
tion technique (Haiden et al. 2011).

SCENE (Storm Cell Evolution and Nowcasting) is  
a precipitation model developed at IMGW-PIB and  
optimized especially for convective events. It is an object-
oriented model which contains the modules for: (i) the de-
tection of convective precipitation based on meteorologi-
cal information from weather radars, a Meteosat satellite, 
a lightning detection system and mesoscale NWP models, 
and also by applying fuzzy logic technique (Jurczyk et al. 
2012), (ii) the division of the area into particular convec-
tive cells with the use of a geometrically-based approach, 
(iii) the determination of separate fields of movement vec-
tors for stratiform precipitation and individual convection 
cells, (iv) the prediction of cell evolution by means of con-
ceptual models for cell lifecycles developed for different 
precipitation structures.

R(t0 + ∆t, x) = R(t0, x – ∆x) + ∆R(t0, x – ∆x) (4)

Fig. 4. Example of nowcast generated by the SEiNO system on 12 July 2016 from 19 to 20 UTC: a) precipitation analysis from  
19 UTC; b) deterministic nowcast for 20 UTC; c) precipitation analysis from 20 UTC which verifies the nowcast
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The difference in terms of the determination of a move-
ment vector field when compared to INCA group models 
is that the SCENE employs its own algorithm for quality 
control of the vectors by comparison with either a mean 
vector from a vicinity or a vector from a previous time 
step. Another important difference is that convective and 
stratiform precipitation are extrapolated separately.

SNOF (Spectral Nowcasting with Optical Flow) is  
a precipitation nowcasting model under development at the 
IMGW-PIB. The main property of the model is the separa-
tion of meteorological objects of different spatial scales 
with the use of 2D Fast Fourier Transformation, which 
divides a precipitation field into several layers. Each layer 
includes meteorological objects of similar scales which 
reflect different phenomena observed in the precipitation 
field, especially convective phenomena. In particular lay-
ers, the precipitation extrapolation is performed separately 
with movement vectors optimised by means of the optical 
flow technique. The field evolution is forecast separately 
in each layer, employing an autoregressive model of the 
second order AR(2) (Bowler et al. 2006). Finally, all the 
layers are aggregated into a nowcasted field. At present 
this model is in the testing stage.

5.	 NWP forecasts

At present, two groups of mesoscale NWP models are 
used operationally at IMGW-PIB. They are developed 
within the frame of participation in two international con-
sortia: COSMO (COnsortium for Small-scale MOdelling) 
and ALADIN. The COSMO basic model and AROME 

model of the ALADIN system work in high-resolution 
configurations on a geographical mesh with a horizontal 
resolution of 2,8 km and 2,0 km, respectively. Both mod-
els are initialized four times per day at 00, 06, 12, and 18 
UTC (Table 2).

Mesoscale NWP models often assimilate observation 
data, including weather radar data necessary to ensure  
the required horizontal resolution (Jakubiak et al. 2014). 
The tools implemented for the assimilation enable the appli-
cation of data available every hour through the Global Tele-
communications System and high frequency data provided 
by IMGW-PIB, e.g., every 10 min from weather radars and 
telemetric rain gauges. The assimilation in COSMO is based 
on a nudging scheme which corrects the initial conditions 
obtained from the global model with the measured data. 
The degree of the correction depends on the spatiotemporal 
distance between a specific measurement and a corrected 
value in the node of the computational mesh. Radar data are 
not yet assimilated into the AROME model.

The high-resolution NWP forecasts constitute a source 
of initial and boundary conditions for ultra short-term ver-
sions of these models, which currently generate forecasts 
every hour with a 10-min time step and spatial resolution 
of about 1-km in research mode.

6.	 Forecast processing
6.1.	Forecast merging (MERGE)

The generation of hybrid forecasts (QPF) by the 
MERGE module of the SEiNO system consists in blend-
ing two kinds of forecasts: (i) nowcasts (QPN) and  

Table 1. Precipitation nowcasting models employed in the SEiNO system

Characteristics of models INCA-PL2
(precipitation module) SCENE SNOF

Source of input data RainGRS RainGRS RainGRS

Auxiliary input data NWP Radar network, Meteosat, NWP, lightning 
detection system No

Analysis of the precipita-
tion spatial structure Not performed Detection of convection areas and 

classification of precipitation structures

Spectral analysis of precipitation field: 
hydrometeor separation based on their 
spatial scale

Extrapolation idea Extrapolation of the 
whole precipitation field

Extrapolation using IMGW’s algorithm with 
object-oriented approach for convection area

Extrapolation of particular layers related to 
hydrometeor spatial scale using optical flow

Precipitation evolution Not considered Conceptual models of convective cell evolu-
tion for different precipitation structures Autoregressive AR(2) model

State of advancement 
(in February 2017) Operational In re-parameterisation In test stage

Table 2. High-resolution mesoscale NWP models working in the operational mode at IMGW-PIB

Model Horizontal resolution 
[km] Runs per day Forecast range [h] Number of 

ensemble members

COSMO 2.8 2,8 4 (00, 06, 12, 18 UTC) 36 20 

AROME 2,0 4 (00, 06, 12, 18 UTC) 30 52
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(ii) ultra short-term forecasts produced by high-resolution 
versions of mesoscale NWP models. The forecasts are 
generated by means of various prediction algorithms and 
complement each other, so the merging algorithm is based 
on an idea that particular methodologies are characterized 
by different reliabilities in different lead times, as depicted 
in Fig. 5.

The merging is based on analysis of forecast reliabil-
ity for a certain number of previous time steps in order 
to determine the merged forecast as a weighted mean 
with proper weighting. For this purpose, some statistical 
reliability metrics are calculated in real time by means of  
a METRICS module. A certain set of criteria values, both 
continuous and based on a contingency table (Gilleland  
et al. 2010) determined by the METRICS for the last (e.g., 
24 time steps) is taken to calculate the weight of the data 
Wi(t) for a given lead time t. The weight is modified by 
factor Wi

mod(t), which depends on the forecasting model 
and the lead time. Finally, the weighted forecast F(t) is 
computed from individual model forecasts Fi(t) using the 
following formula:

The quality field assigned to the merged forecast is 
computed from the formula:

The MERGE module is employed in the three stages of 
forecast processing to merge all nowcasts and NWP ultra 
short-term forecasts separately and finally to combine the 
two merged forecasts into one set of hybrid forecasts.

6.2.	Producing probabilistic forecasts (ENSEMBLE, 
PROB)

In recent years many efforts have been made that 
aim at developing the methodology for the generation 
of probabilistic forecasts because they provide more 
comprehensive information about predicted phenomena, 
particularly about their uncertainty. The approach used in 
the SEiNO system is based on the general idea that a now-
cast of precipitation in a given pixel is modified by adding  
a certain set of perturbations related to the data quality in 
this pixel. The perturbations are to generate an ensemble 
of equiprobable nowcasts:

where: Ri is the 10-min precipitation accumulation in i-th 
member of a precipitation ensemble; R is the deterministic 
precipitation (rate or accumulation); δi is the perturbation  
introduced into precipitation in i-th member of the ensemble. 

Perturbation fields δi are generated by a technique 
based on the data quality introducing a random factor.  
As a starting point, an error covariance matrix A of a pre-
cipitation field is determined. Germann et al. (2009) com-
pute the matrix statistically by comparison of the radar and 
rain gauge measurements with historical data and then de-
compose it into a triangular L matrix, applying a Cholesky 
technique. In the PROB module of the SEiNO system,  
the matrix A is dynamically calculated by an adaptive 
method in which, contrary to the static approach of Ger-
mann, the error covariance matrix of an estimated precipi-
tation field is determined on the basis of current precipita-
tion R and QI values. This allows the impact of current 
measurement errors in input data to be taken into account, 
which is especially crucial in the case of radar measure-
ments due to the extremely changeable characteristics  
of their errors over time (see Sect. 2.3).

A particular i-th perturbation vector is generated by 
the multiplication of the L matrix by i-th vector of white 
noise εi:

Applying these perturbation vectors to Equation 7, 
an ensemble of nowcasts is generated from deterministic 
nowcasts R in the form of a package of n equiprobable 
precipitation scenarios and its spread is determined by the  
L matrix. Such nowcast ensembles may consist of a dif-
ferent number of members, but for ensemble prediction 
systems implemented in mesoscale NWP models the 
number between 20 to 50 members is suggested (Roulin, 
Vannitsem 2005; Eckel, Delle Monache 2016).

Fig. 5. Schematic diagram of reliability of nowcasts and ultra 
short-term forecasts for different lead times (based on Golding 
1998)

∑(Wi (t) ∙ W imod (t))
i

∑(Wi (t) ∙ W imod (t) ∙ Fi (t))
i

F(t) = (5)

(7)

(6)
∑(Wi (t) ∙ W imod (t) ∙ QIi (t))

∑(Wi (t) ∙ W imod (t))
i

i

QIoutput (t) = 

Ri (t0 + ∆t, x) = R(t0 + ∆t, x) + δi (t0 + ∆t, x)

δi (t) = L(t) ∙ εi (8)
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Working with the ensembles may be inconvenient, so 
they are processed to deliver more synthetic information 
expressed by the probability density function (PDF). For 
this purpose, the appropriate PDF describing the precipita-
tion must be assumed; a gamma PDF is most often chosen 
because of its shape, which corresponds to the empirically 
obtained histograms. The PDF parameters are estimated 
from the precipitation values in all ensemble members 
for each pixel separately (Szturc et al. 2008, 2010). Then, 
based on the parameterized PDF, the nowcasts can be 
presented in one of the two proposed forms: (i) as a set 
of percentiles of the probability distribution (e.g. 5, 25, 
50, 75, and 95%); (ii) by the probability of exceedance of  
a preset precipitation threshold (e.g. 1 or 10 mm h-1).

In figure 6 shows an example of the probabilistic 
forecasts generated for the example from Fig. 4. For the 
deterministic nowcast (Fig. 4b) the probabilistic forecasts 
in the form of PDF percentiles (Fig. 6a-c) and probability 
of precipitation exceeding 1 mm 10 min-1 (Fig. 6d) are 
presented.

7.	 Summary

The SEiNO system consists of a set of applications 
and modules for precipitation data processing, and the 
estimation and nowcasting of a precipitation field. Most of 
the developed algorithms are based on the use of quality 
information generated quantitatively at each stage of the 
data processing. Moreover, the generation of probabilistic 
data presented in the form of sets of percentiles or prob-
abilities of exceedance is introduced.

The most important properties of the SEiNO system 
are: (i) the high spatial and temporal resolution (1 km and 
10 min, respectively), (ii) a multi-model approach which 
allows the system – by the selection of one algorithm from 
different alternative ones for each individual task – to 
be configured, especially in the case of nowcasting, (iii) 
the crucial role of data quality at each stage of the data 
processing, (iv) the taking into account of the real-time 
reliability of generated nowcasts.

Some of the SEiNO modules have been running opera-
tionally at IMGW-PIB for a few years. They have proven 
to work effectively and on a satisfactory level, especially 
the RainGRS module and related applications for quality 
control of input data. When it comes to other modules,  
it is necessary to work on their reliability; for example,  
the SCENE needs improvements in terms of more ad-
vanced algorithms, such as object-oriented extrapolation 
and modeling of convective precipitation evolution. 
Newer modules, like those for the generation of proba-
bilistic precipitation (PROB), require the development  
of methodology for the validation of their outputs; on top 
of this, the employed algorithms are too time-consuming. 
More innovative modules like SNOF are still under devel-
opment.
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Fig. 6. Example of probabilistic nowcast generated by the SEiNO system on 12 July 2016 from 19 to 20 UTC: a-c) percentiles of 
precipitation PDF 25%, 50%, and 75%; d) spatial distribution of probability of exceeding 1 mm 10 min-1 precipitation
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List of abbreviations
ANSI C – standard for the C programming language
AR – autoregressive model
ALADIN – NWP consortium
AROME – NWP model of the ALADIN consortium
CentOS – Community Enterprise Operating System (dis-
tribution of Linux operating system)
COSMO – Consortium for small-scale modelling (NWP 
consortium)
EUMETNET – network of European national meteoro-
logical services
GANDOLF – Generating Advanced Nowcasts for De-
ployment in Operational Land-based Flood Forecasts
HDF5 – Hierarchical Data Format 5 (file format)
IMGW-PIB – Institute of Meteorology and Water Man-
agement – National Research Institute (in Polish: Instytut 
Meteorologii i Gospodarki Wodnej – Państwowy Instytut 
Badawczy) (Polish national meteorological service)
INCA – Integrated Nowcasting through Comprehensive 
Analysis (nowcasting model)
INCA-CE – INCA Central Europe (European project)
INCA-PL – INCA model adapted by IMGW-PIB
INCA-PL2 – INCA model adapted by IMGW-PIB, v. 2 
MERGE – SEiNO module for the merging of precipitation 
data
METRICS – SEiNO module for the generation of reliabil-
ity statistics for precipitation data
NWC SAF – Satellite Application Facility on Support  
to Nowcasting and Very Short Range Forecasting (EU-
METSAT program)
NWP – numerical weather prediction
ODIM – OPERA digital information model
OPERA – Operational Programme for the Exchange  
of Weather Radar Information (EUMETNET program)
PAC – precipitation accumulation (radar product)
PDF – probability density function
POLRAD – Polish weather radar network
PQPF – probabilistic QPF
PROB – SEiNO module for the generation of probabilistic 
forecasts
PUWG 92 – Polish coordinate system (Państwowy Układ 
Współrzędnych Geodezyjnych 1992)
QPE – quantitative precipitation estimate
QPF – quantitative precipitation forecast
QPN – quantitative precipitation nowcast
RADVOL-QC – System of weather radar 3D data quality 
control
RainGRS – SEiNO module for multi-source QPE
RLAN – Radio Local Area Network
SCENE – Storm Cell Evolution and Nowcasting (now-
casting model)

SEiNO – System for the Estimation and Nowcasting of 
Precipitation (in Polish: System Estymacji i Nowcastingu 
Opadów)
Selex ES – weather radar manufacturer
SEVIRI – Spinning Enhanced Visible and Infrared Imager 
(Meteosat radiometer)
SNOF – Spectral Nowcasting with Optical Flow (now-
casting model)
SRI – surface rainfall intensity (radar product)
STEPS – Short Term Ensemble Prediction System (now-
casting model)
TITAN – Thunderstorm Identification Tracking Analysis 
and Nowcasting (nowcasting model)
SUM – SEiNO module for precipitation accumulation
ZAMG – Zentralanstalt für Meteorologie und Geodyna-
mik (Austrian national meteorological service)
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