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Abstract 

In this study, the hydrology of Shahpur catchment is modeled to calculate the hydrological discharge of Shahpur Dam and to 

establish the water balance component using the Soil and Water Assessment Tool (SWAT) . Shahpur catchment is located on the 

Nandana River basin in Pakistan, about 45 km from Islamabad and 8 km north of Fateh Jang. The Arc SWAT 2012 version 

10.5.24, which was created for Arc Map 10.5, was used to delineate the study area and its sub-components, combine the data 

layers, and edit the model database and SWAT CUP SUFI2 algorithm for calibration and validation.. Calibration from 2000-2004 

and validation from 2006-2010 employed historic daily flow data and climatic data collected from the Shahpur Dam site office 

and Pakistan Meteorological Department (PMD) Islamabad. Based on literature reviews, 11 parameters with stronger influence 

on runoff were chosen. Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and root-mean-square/standard deviation ratio 

(RSR) were used as statistical indicators. Results indicated satisfactory agreement between measured and simulated discharge 

values at yearly and monthly scales, demonstrating robust performance during both calibration (R² = 0.95) and validation  

(R² = 0.82) periods. The findings support the applicability of the model for effective watershed management in Shahpur based 

on favorable indicators and comparative outcomes. 
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1. Introduction 

Water is a key aspect for economic development, including agricultural and industrial expansion, 

particularly in the context of rapidly growing population and urbanization. Under changing land use and 

climate, sustainable water resource management and optimal allocation of water resources across multiple 

water uses are key difficulties that many civilizations are either facing or will confront in the next decades  

(Stehr et al. 2008). To address water management challenges, we must investigate and evaluate the many 

aspects of hydrologic processes occurring within the study area. Because all of these activities occur 

within separate micro-watersheds, the studies must be done on a watershed basis. For understanding the 

complicated hydrological response of a watershed and its direct relationship to climate, geography, 

geology, and land use, advanced mathematical models have been constructed. Water flows not just over 

the surface of land, but also underneath it in the unsaturated zone and even deeper in the saturated zone 

(Singh, Woolhiser 2002). Simulating these processes through a watershed model is essential for addressing 

a variety of water resource, environmental, and social issues. SWAT model predictions have been deemed 

computationally efficient by researchers (Neitsch et al. 2005). The tool has shown dependability in 

numerous regions throughout the world. Khan et al. (2014) used the SWAT model on a large scale to 



examine hydrological processes in a mountainous environment of the Upper Indus River Basin, as well as 

in other Asian locations (Supit, Ohgushi 2012; Nasrin et al. 2013). 

Beroho et al. (2025) investigated the 9th April watershed in northern Morocco, a semi-arid region with 

limited hydrometeorological data. They integrated SWAT with projected land use-land cover (LULC) and 

climate scenarios to model future hydrological responses and sediment transport. Fadil et al. (2011) 

employed it in several African locations. Schuol et al. (2008) and Ashagre (2009) also used it in 

simulations. Kamuju (2019) studied the St. Joseph River watershed in the United States. SWAT is a GIS-

based watershed- or river basin-scale model that can represent both geographic diversity and physical 

processes within smaller modeling units known as hydrologic response units (HRUs) for the long -term 

planning and management of river surface water resources. Its predictions have been declared 

computationally effective by researchers (Neitsch et al. 2009). It has been proven to be reliable in a 

majority of places globally. 

2. Materials and methods 

2.1. Study area 

We selected the Shahpur Dam as a study site to perform hydrological modeling by using SWAT and GIS 

analysis. The dam site is located at 33°37'0'', 73°41'0''E in Fateh Jang Tehsil near the Kala Chitta Range in 

the Attock District, about 45 km from Islamabad and 8 km north of Fateh Jang, as shown in Figure 1. 

The dam was commissioned by the Small Dams Organization, Government of Punjab, in 1982 and was 

completed in 1986 at a cost of PKR 36.5 million. The main dam is a concrete gravity type with 0.6 m 

thick stone masonry skin and a centrally located spillway. There is an ungated ogee spillway in the middle 

of the dam for passing flood discharges. The capacity of the spillway is 1008 m3/s. This discharge is based 

on 230 mm rainfall, which is the maximum probable in 24 hours with a 1000-year return period. The 

width of the spillway is 85 m, which could easily handle a discharge of 460 m3/sec with a head of 3 m 

above the crest. A flip-type stilling basin was installed to dissipate the energy of falling water from the 

spillway. The reservoir of Shahpur Dam has a gross storage capacity of 14,320 acre-feet (17.7×106m3), of 

which 4,079 acre-feet (5.0×106m3) is dead storage capacity and the rest is live usable storage (Cheema, 

Bandaragoda 1997; Ghumman et al. 2019). 

2.2. Creation of database 

2.2.1. Time-based datasets 

SWAT requires climate data to supply moisture and energy inputs that govern the water balance and 

establish the key results of the various components of the hydrological cycle. Hydrological modeling 

requires long-term meteorological datasets of precipitation, temperature, wind speed, solar radiation, and 

relative humidity. The minimal essential inputs for the SWAT model are precipitation and temperature, 

whereas the remaining factors are optional. The model’s weather-generating feature allows it to create 



data based on these inputs (Ghoraba 2015). Weather data (daily maximum and minimum temperature, 

relative humidity, and wind speed) of the study area is obtained from PMD Islamabad. 

The Shahpur Dam site office, located in Fateh Jhang, provided daily precipitation data. Historic daily flow 

data were provided for the years 2000-2004 for calibration and 2006-2010 for flow simulation validation. 

The monthly inflow to Shahpur Dam was measured at a station located near the dam. 

2.2.2. Spatial datasets 

Topography, land use-land cover, and soil composition are spatial datasets that characterize every land 

system and are essential for the hydrological model (Arnold et al. 1998). The input element of the SWAT 

model involves components of the land system that consist of DEM, land use, and soil (Ghoraba 2015). 

The DEM is downloaded from the Earth Explorer of the United States Geological Survey (USGS). Then, 

using the extract-by-mask feature, the study region is isolated from the large DEM file shown in Figure 2. 

For delineation, an SRTM DEM with resolution 30 m × 30 m was used. The automatic watershed 

delineation feature was applied to define the watershed. Landsat 8 satellite imagery was used to create a 

land use map through supervised classification, employing ERDAS IMAGINE 2012, as shown in Figure 

3 (Beroho et al. 2023). The water cycle is affected by changes in land use and vegetation; the impact 

depends on the species’ morphology and plant cover density. Four main classes have been defined. The 

most important groups are urban (4.84%), water (2.71%), barren (57.63%), and agricultural land 

(34.82%). The original land use classes were replaced with SWAT classes and specified using a lookup 

table. These conversions are presented in Table 1. For this research, two types of soil shown in Table 1 

were found in SWAT by using a soil map, which was downloaded from FAO maps. The study area was 

clipped by the clip feature in Arc GIS, also shown in Figure 4 (Malik et al. 2022). 

Table 1. Conversion of LULC to SWAT classes and soil classification. 

Sr. No. LULC classes Area [%] 
 

Sr. No. 
SWAT  

soil class 
Description Area [%] 

1 Built Up 4.84 
 

1 I-X-c-3512 
Gelic 
Regosols 

15.3489 

2 Water 2.71 
 

2 Rc40-2b-3843 
Haplic 

Chernozems 
84.6511 

3 Barren 57.63 
    

 

4 Vegetation 34.82 
    

 

 



 

Fig. 1. Study area location on maps of Pakistan and the Attock District. 



 

Fig. 2. Study area extraction and watershed delineation. 



 

Fig. 3. Land use-land cover of Shahpur Catchment. LULC Mapping: LULC classes were mapped to SWAT land 

cover and soil classes using standard lookup tables, derived from FAO soil maps and Landsat 8 imagery, ensuring 

accurate representation of the catchment’s spatial characteristics. 

 

Fig. 4. Soil map of Shahpur Catchment. Mapping was performed using FAO soil maps and SWAT lookup tables.  

2.3. Model simulation 

The Shahpur Dam watershed hydrologic modeling was performed using Arc SWAT 2012 version 10.5.24, 

which was created for Arc Map 10.5. The model is ready for simulation once data files have been 

prepared, and all model inputs have been finalized. The simulation spans four years, from 2000 to 2004, 

which coincides with the availability of climatic data. 



2.4. Model efficiency 

Model calibration and validation are important steps in the simulation, applied to evaluate parameter 

estimation outcomes. There are several approaches for assessing and evaluating the model’s efficiency. 

The coefficient of determination (R 2), root-mean-square error (RMSE), standard deviation ratio (RSR), 

Nash–Sutcliffe efficiency index (NSE), and percent bias (PBIAS) were used for calibration and validation 

(Moriasi et al. 2007; Fadil et al. 2011). 

2.4.1. Coefficient of determination (𝑅2) 

By following a best fit line, it is an excellent approach to indicate the consistency between observed and 

simulated data. Higher values indicate less error variance, and values greater than 0.50 are regarded as 

acceptable. It ranges from zero to 1.0 (Santhi et al. 2001; Van Liew et al. 2007). 
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Where Qs,j is the discharge flow’s simulated value, Qm,j is the discharge flow’s measured value, and Qm is 

the mean of the measured discharge flow; n is the length of the measured discharge, and Qs is the mean 

of the simulated discharge flow. 

2.4.2. Nash–Sutcliffe efficiency (NSE)  

NSE is a normalized statistical approach for predicting the relative level of noise vs data.  
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Where Ysimi is the ith simulation, and Yobsi is the ith observation (stream flow), the mean of the actual 

data, Ymeani is the simulated value, and n is the sum of all observations (Nash, Sutcliffe 1970).  

2.4.3. Percent bias (PBIAS) 

PBIAS calculates the average tendency of simulated values to be greater or lower than observed values. 

The statistic ranges from –10 to +10. PBIAS has an optimum value of 0.0, with low-magnitude values 

indicating accurate model simulation. Positive values indicate model underestimation bias, whereas 

negative values suggest model overestimation bias (Gupta et al. 1999). 
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2.4.4. RMSE-RSR 



An RSR range of 0 to 0.5 indicates good performance for both the calibration and validation periods. The 

lower the value of RSR, the smaller the RMSE as normalized by the standard deviation of the data, 

indicating the precision of the model simulation (Singh et al. 2005). 
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3. Results 

3.1. Parameter sensitivity analysis 

After running the SWAT model, the model parameters must be calibrated and analyzed for sensitivity. 

Based on a literature review, 11 factors with stronger influence on runoff were chosen, supported by 

Arnold et al. (2012) and Abbaspour (2007). The (SUFI2) algorithm was used to determine the parameters 

in this project. To achieve the best match between the model’s output and the observed flow data, the 

model is repeatedly simulated by adjusting the evapotranspiration calculation technique and the values of 

hydrological parameters that were selected by the model. 

3.2. Model calibration and validation results 

The SWAT-CUP tool is one of the best tools for calibrating the SWAT model, and it is appropriate for 

assisting decision-makers in conceptualizing sustainable watershed management, allowing decision-makers 

to better calibrate the model (Mengistu et al. 2019). The simulated and actual surface runoff were 

compared for calibration. Only the fundamental scale and range of values generated by the model were 

verified using monitoring data. The exact value of calibrated hydrological parameters was utilized for 

validation after obtaining acceptable runoff data. Following that, the model’s performance with calibrated 

parameters was evaluated to recreate the hydrological functioning of the watershed over a period that was 

not employed in the calibration phase. The observed flow data obtained from the Shahpur Dam site 

office, recorded at a gauging station downstream from the Shahpur Dam on the Nandana River, were 

used for flow calibration and validation. The available data were compared to the projected results to 

determine the effectiveness of the SWAT simulation. The calibration was performed on a monthly and an 

annual basis using outflow data from 2000 to 2004; the parameters were then validated between 2006 and 

2010. To reduce the gap between the simulated and actual values, 11 model parameters (Table 2) were 

adjusted (Arnold et al. 2012). 

All sub-watersheds received a 2% increase in CN2, a 0.3% increase in ALPHA BF, a 0.1% increase in 

GW DELAY, a 0.5% increase in GWQMN, a 0.3% increase in SLSUBBSN, a 0.4% increase in 

SURLAG, a 3% increase in OV N, and a 0.35% increase in ESCO. SOL-AWC and CH N2, the starting 

parameters, were multiplied by 1.2 and 0.3, respectively (Abbaspour 2007). The calibration of the model 

for various water balance components produced satisfactory agreement (Gasirabo et al. 2023). 



Table 2. Parameter descriptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Graphical comparison of calibration and validation results 

Predicted and actual yearly flows over the calibration period are compared in Figure 5. The average flow 

for the simulated period was 11.89 m3/s, whereas the average actual flow over the same time was about 

13.00 m3/s. Maximum flow was in 2003; minimum flow was in 2000. Depending on the meteorological 

information obtained from the PMD, the simulation results demonstrate a good fit with peak and low-

flow periods. According to Figure 6, the flow results for the validation period indicate good agreement 

between observed and model-simulated data. The simulation’s average annual flow was 24.45 m3/s, 

whereas the average measured flow over the same period was 26.16 m3/s, a close match. The findings 

indicate that the model can be successfully applied to forecast annual average river flow levels. The 𝑅2 

statistics for calibration and validation, indicating the reliability of the findings, are displayed in Figures 7 

and 8, where 𝑅2 is 0.99 and 0.96, respectively, demonstrating that the model findings for both periods are 

excellent. The model’s annual stream flow data indicated a PBIAS of 1.8 for the calibration period and 

0.51 for the validation period. These numbers show that the model overestimated stream flow during the 

validation period while simulating stream flow with a less precise model during the calibration phase. RSR 

was 0.52 for the calibration period and 0.29 for the validation period, according to the data. Table 5 and 6 

provide summaries of the statistical analysis of simulated and actual yearly stream flow data. Based on 

NSE, the model results for calibration (0.91) and for validation (0.86) are both satisfactory. Monthly flow 

model results are also depicted in Figures 9, 10, 11, and 12 with 𝑅2 values that are quite acceptable. The 

modeled monthly stream flow data indicated a PBIAS of 0.34 for the calibration period and 0.08 for the 

Parameter Definition 
Modification 

method 

Initial 

range 

Optimal  

parameter value 

CN2 
Initial SCS runoff curve number for moisture 
condition  

r 35-98 96.24 

ALPHA_BF Base flow alpha factor v 0-1 0.52 

GW_DELAY Ground water delay(days) v 0-500 31 

GWQMN 
Threshold depth of water in the shallow 
aquifer required for return flow to occur 

v 0-5000 900 

SOL_AWC Available water capacity of the soil layer r 0-1 15 

SLSUBBSN Average slope length r 10-150 50 

SURLAG Surface runoff lag coefficient(days) r 0.05-24 3.93 

OV_N Manning‘s “n” value for overland flow r 0.01-1 5.98 

ESCO Soil evaporation compensation factor r 0-1 0.72 

EPCO Plant uptake compensation factor r 0-1 0.18 

CH_N2 Manning coefficient for main channel r -0.01-0.3 0.035 



validation period. These numbers show that the model overestimated stream flow during the validation 

period while simulating stream flow with a less precise model during the calibration phase. RSR was 0.23 

for the calibration period and 0.31 for the validation period, according to the data. Table 3 and 4 provide 

summaries of the statistical analysis of simulated and actual monthly stream flow data. According to the 

NSE approach, the model results of 0.89 for calibration and 0.58 for validation are both satisfactory. The 

simulation underestimates the peak flow values experienced in January, May, and September. The location 

of the peaks was generally well-simulated for both the calibration and validation periods. If additional 

precipitation and temperature datasets from meteorological observatories with specific coverage of the 

research region were available, the model results might be enhanced significantly and achieve outstanding 

accuracy. Numerous studies have shown the SWAT model’s under-prediction of peak flows (Fadil et al. 

2011; Ghoraba 2015). 

Table 3. Statistical analysis of simulated and actual monthly stream flow for calibration. 

Calibration (2000-2004) Observed Simulated 

Mean 1.16 0.92 

R2 0.95 

NSE 0.89 

PBIAS 0.34 

RSR 0.23 

Table 4. Statistical analysis of simulated and actual monthly stream flow for validation. 

(2006-2010) Observed Simulated 

Mean 3.58 1.90 

R2 0.82 

NSE 0.58 

PBIAS 0.08 

RSR 0.31 

Table 5. Statistical analysis of simulated and actual annual stream flow for calibration. 

Calibration (2000-2004) Observed Simulated 

Mean 13 11.89 

R2 0.99 

NSE 0.91 

PBIAS 1.8 

RSR 0.52 

Table 6. Statistical analysis of simulated and actual annual stream flow for validation. 

(2006-2010) Observed Simulated 

Mean 26.16 24.45 

R2 0.96 

NSE 0.86 

PBIAS 0.51 

RSR 0.29 

 



 

Fig. 5. Observed and predicted annual stream flow during the calibration period (2000-2004). 

 

Fig. 6. Observed and simulated annual stream flow during the validation period (2006-2010). 
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Fig. 7. Annual value of R2 for the calibration period (2000-2004). 

 

Fig. 8. Annual value of R2 for the validation period (2006-2010). 
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Fig. 9. Monthly flow model results for the calibration period (2000-2004). 

 

Fig. 10. Monthly flow model results for the validation period (2006-2010). 
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Fig. 11. Monthly value of R2 for the calibration period (2000-2004). 

 

Fig. 12. Monthly value of R2 for the validation period (2006-2010). 

3.4. Water balance components 

In addition to annual and monthly flow, the SWAT model assessed additional essential water balance 

components. According to (Sathian, Shyamala 2009), the most essential aspects of a basin’s water balance 

are precipitation, surface runoff, lateral flow, base flow, and evapotranspiration (Arnold et al. 1998). 

Except for precipitation, all of these variables require prediction to be quantified because their 

measurement is difficult. The average annual basin values for various water balance components 

throughout the model’s simulations of the calibration and validation periods are presented in Table 7, 

computed as a proportion of the annual rainfall average in Figure 13. Among these aspects, actual 

evapotranspiration (ET) generated the most water loss from the watershed. A high evapotranspiration 
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rate expected might be ascribed to the type of plant cover and high temperature associated with the 

location. For the calibration period, the average annual evapotranspiration is 0.31, and for the validation 

period, the value is 0.30. The quantity of stream flow leaving the watershed’s outflow during the time step 

is known as total water yield (WYLD). The majority of the rainfall received by the basin is lost as stream 

flow, as can be observed. On the other hand, for the calibration period, the ratio of the simulated average 

annual surface runoff to the average annual precipitation is 0.41 and 0.32 for the validation period. The 

lateral flow (Lat Q) was significantly impacted by the terrain slope. As the slope rises, the lateral flow, 

calculated as a proportion of annual rainfall average, is 1% for the calibration period and 13% for the 

validation period. Therefore, lateral flow is a crucial factor in river flow on sloping terrain. It has little 

effect on shallowly sloped ground. Deep aquifer recharging is substantial in all situations, with average 

percentages of 16% and 7% of total rainfall for both simulated periods. The water from the shallow 

aquifer that returns to the reach during the time step is known as groundwater contribution to stream 

flow (GWQ), and it varies greatly among streams. For both the calibration and validation periods, the 

average annual contribution of groundwater relative to precipitation is 11% and 18%, respectively. 

Table 7. Average annual water balance components. 

Months 
Rain 
[mm] 

Snow 
fall 

[mm] 

SURF Q 
[mm] 

LAT Q 
[mm] 

Water 
Yield 

[mm] 

ET 
[mm] 

Sed. 
Yield 

[mm] 

PET 
[mm] 

1 22.48 0 10.36 0.03 12.11 1.74 6.3 20.87 

2 37.52 0 21.66 0.03 26.21 4.66 14.7 30.16 

3 22.72 0 11.18 0.04 17.47 6.15 6.78 61.2 

4 21.92 0 6.22 0.04 11.32 11.68 3.43 91.67 

5 15.36 0 4.27 0.04 7.06 9.96 2.33 172.67 

6 42.24 0 16.65 0.04 17.08 20.66 10.03 162.62 

7 83.6 0 40 0.04 40.52 30 25.36 125.4 

8 71.34 0 31.87 0.05 36.33 26.66 20 105.67 

9 36.94 0 15.67 0.05 25.07 13.61 10.1 97.44 

10 18.24 0 9.46 0.05 16.03 4.03 5.91 76.75 

11 6.7 0 2.11 0.05 5.57 1.99 1.13 38.28 

12 17.84 0 9.04 0.04 11.86 1.73 5.54 20.18 

0 396.9 0 178.49 0.5 226.63 132.87 111.61 1002.91 

 



 

 

Fig. 13. Average annual water balance as a relative percentage to precipitation. 

4. Conclusion and recommendations 

The current study attempted to simulate the influence of climatic change, LULC, soil, and topographic 

conditions on the Shahpur catchment using Arc SWAT 2012 and the input of long-term meteorological 

data, satellite data, soil data, and DEM images. The Shahpur catchment’s hydrologic model was calibrated 

and certified using the SWAT-CUP SUFI-2 program to improve the output so that it matches the 

reported discharge at the gauging station located near the Shahpur Dam site office (Brighenti et al. 2019). 

The observed flow data obtained from the Shahpur Dam site office, recorded by a gauging station 

downstream from the Shahpur Dam on the Nandana River, were used for flow calibration and validation. 

The SWAT model’s effectiveness and capability were determined by the hydrological study in this 

research project. The model’s efficiency was assessed using accurate calibration from 2000 to 2004 and 

validation from 2006 to 2010. The calibrated model can be used to investigate the effects of rising 

temperatures, land use change, and other management-relevant scenarios on streamflow and soil erosion 

proactively. To evaluate the effectiveness of the model, R2, Nash-Sutcliffe efficiency (NSE), percent bias 

(PBIAS) and RMSE factors were evaluated for both annual and monthly flows. On an annual basis, 

manual calibration was conducted first, followed by automatic calibration. On a monthly basis, the 

model’s calibration and validation generated satisfactory simulation results.  

GWQ
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The validation R2 value for monthly stream flow was 0.82%, while the calibration R2 value was 0.95%, 

demonstrating the symmetric regression of the model. The NSE, which measures how well the model fit 

the observed data, was 0.58 for validation and 0.89 for calibration. The PBIAS parameter indicates 

underestimation, with calibration and validation results of 34 and 8%, respectively. The PBIAS parameter 

displays the difference between the simulated and observed amounts, with a value of 0 ideal. Positive 

values indicate underestimation, whereas negative values represent overestimation. The validation RMSE 

value was 0.31%, while the calibration R2 value was 0.23%, for monthly stream flow. The model’s yearly 

stream flow data indicated a PBIAS of 1.8 for the calibration period and 0.51 for the validation period. 

These numbers show that the model underestimated stream flow during the validation period while 

simulating the stream flow with precision during the validation phase. RSR was 0.52 for the calibration 

period and 0.29 for the validation period, according to the data. The average flow for the simulated 

period was 11.89 m3/s, while the average real flow was approximately 13.00 m3/s. The flow reached its 

peak in 2003, with the lowest flow occurring in 2000. The validation period flow result shows good 

correlations between observed and model-simulated data. The average yearly flow in the simulation was 

24.45 m3/s, while the average observed flow over the same period was roughly 26.16 m3/s, suggesting a 

striking match. The calibration of the model for various water balance components produced satisfactory 

agreement. The findings of this research suggest that precise water consumption data are required to 

produce a more accurate representation of water production and the availability of deep aquifer recharge 

resources with a reduced uncertainty range. Natural year-to-year variability owing to climate, as well as 

water abstraction and consumption, is included in the stated uncertainty. These results show that the 

model can correctly anticipate average annual and monthly stream flow levels. It was concluded from the 

results that if more reliable precipitation and temperature data sets from climatic observatories with good 

specific coverage of the research region were available, the model results might be greatly improved, with 

exceptional precision. The hydrological modeling of the Shahpur catchment using the SWAT model 

revealed important insights but also highlighted several gaps. Limitations in meteorological data restricted 

the model’s accuracy, suggesting the need for a more comprehensive dataset that includes additional 

climatic parameters. Additionally, the study primarily focused on surface water without integrating 

groundwater interactions. Finally, the absence of climate change scenarios indicates a critical area for 

future research to support effective water resource management. The SWAT model operates on several 

assumptions about hydrological processes that may not hold true in all contexts. These assumptions could 

limit the applicability of the model results to other similar catchments. Future research should prioritize 

enhanced data collection by establishing more meteorological stations to improve model accuracy and 

real-time monitoring. Integrating advanced remote sensing technologies would provide timely data on 

land use and vegetation changes. A comprehensive approach using coupled surface and groundwater 

models is recommended to better understand the hydrological cycle. Previous studies in hydrological 

modeling have often focused on general applications of the SWAT model in various regions, but many 

have lacked comprehensive calibration and validation specific to localized settings like the Shahpur 



catchment. This research provides a hydrological model tailored for the Shahpur catchment, facilitating 

improved water resource management in a rapidly urbanizing region. The successful calibration and 

validation of the SWAT model enhance predictive capabilities for streamflow under varying climatic and 

land use scenarios. Moreover, the findings underscore the importance of localized data integration, which 

can inform future watershed management strategies and contribute to sustainable development in water-

scarce areas. By addressing specific challenges related to water resource allocation, this study contributes 

valuable insights for policy-making and environmental planning. We propose that this model be 

employed for Shahpur watershed management based on its robust performance and comparative 

outcomes. 

Most existing studies focus on large river basins, leaving a contextual and methodological gap in applying 

and validating SWAT in semi-arid regions with limited historical data. This study addresses these gaps by 

successful calibration and validation of the SWAT model using available data from 2000-2010 for the 

Shahpur catchment. The results show strong model performance and highlight the model’s potential for 

effective watershed management. The study is limited by the unavailability of recent meteorological and 

discharge data, as well as the exclusion of dynamic land use and climate change scenarios. Despite these 

limitations, the study contributes significantly by establishing a baseline framework for future hydrological 

modeling in similar environments. We recommend that future research should incorporate high-

resolution, more detailed climate and land use datasets, investigate groundwater–surface water 

interactions, and apply scenario-based modeling to assess the long-term impacts of climate variability and 

land use change on watershed hydrology. 

Abbreviations 

CUP  Calibration and Uncertainty Programs 

D_RECH Deep Recharge 

DEM Digital Elevation Model  

ET Evapotranspiration 

GWQ Groundwater Contribution to Streamflow 

LATQ Lateral Flow 

NSE Nash–Sutcliffe Efficiency  

PBIAS Percent Bias 

PET Potential Evapotranspiration 

PMD Pakistan Meteorological Department  

RMSE  Root Mean Square Error  

RSR Ratio of RMSE to the standard deviation 

SUFI Uncertainty in Sequential Uncertainty Fitting 

SURQ Surface Runoff 

SWAT Soil and Water Assessment Tool 
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