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Abstract 

Climate extremes have become increasingly important in recent years, leading to renewed scientific interest. However, few studies 

have focused on precipitation extremes in cities in Burkina Faso, a Sahelian country in West Africa. The aim of  this study is to 

analyze trends and to project future extreme precipitation indices in three cities in Burkina Faso. To this end, precipitation data, 

recorded daily, were collected from the National Meteorological Agency of  Burkina Faso (NMABF) over the period 1991-2020. 

The stations selected were Boromo for the small town of  Boromo, Saria for the medium-sized town of  Koudougou, and Bobo-

Dioulasso for the town of  Bobo-Dioulasso. The precipitation data were used to calculate the extreme precipitation indices 

described by ETCCDMI (Expert Team for Climate Change Detection Monitoring and Indices) using Rclimdex. Descriptive 

statistics, the Mann-Kendall test, and trends from innovative models were used to analyze the extreme precipitation indices; the 

Holt-Winters additive model was used to analyze future projections. The study showed considerable variability and a monotonic 

increasing trend in extreme precipitation indices over the period 1991-2020. However, for the city of  Koudougou, the trend was a 

non-monotonic increase. The forecast based on the Holt-Winters additive model shows considerable variability in the extreme 

precipitation indices, with an upward trend over the period 2020-2030. On the other hand, in the city of  Koudougou, indices of  

precipitation duration will decrease, indicating that the city will be affected most by the frequency and intensity of  extreme 

precipitation. 
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1. Introduction 

Fluctuations in temperature and precipitation are widely recognized as relevant indicators of  global 

climate change and variability (IPCC 2021). Anthropogenic activities that increase greenhouse gases cause 

temperature increases and regional changes in mean climate, resulting in climate extremes in various parts 

of  the world (IPCC 2023). In West Africa, several studies, including in Nigeria (Gbode et al. 2019), 

Mauritania, Guinea, Côte d'Ivoire, Senegal, Mali, and Niger (Barry et al. 2018), have observed these 

changes. Sylla et al. (2015) add that the increase in the intensity of  very wet events, particularly in the pre- 

and early monsoonal periods, will be more marked over the Sahel and under Representative Concentration 

Pathway (RCP) 8.5 than in the Gulf  of  Guinea under RCP 4.5. Urban areas will also be affected by 

climate extremes in West Africa (Herslund et al. 2015), which is a major concern. 

African cities are experiencing an unprecedented increase in the rate of  urbanization. Between 1990 and 

2022, 500 million people are expected to move to urban centers in Africa (OECD 2022). By 2050, Africa's 

urban population is expected to reach 1.06 billion (Ezeh et al. 2020). This demographic growth will 

increase the impact of  climate extremes on urban populations. Extreme precipitation caused flooding in 

Dar es Salaam on 22 December 2011, resulting in 20 deaths, extensive damage, and loss of  livelihoods 
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(Giugni et al. 2015). The same happened in Lagos, Nigeria (Doan et al. 2023) and Dakar, Senegal (Diémé 

et al. 2025). In Burkina Faso, the situation is no better than in other West African countries. The country is 

experiencing an increase in precipitation and extreme temperature indices in the north, Boucle du 

Mouhoun, and southwest regions (Rouamba et al. 2023; Yaméogo, Rouamba 2023a; Yanogo, Yaméogo 

2023; Yaméogo 2024; Yaméogo, Sawadogo 2024; Yaméogo 2025), with dramatic consequences for the 

population (Yaméogo, Rouamba 2023b). In this context, (Gimeno et al. 2022) note that the increase in 

urban populations associated with climate change makes societies increasingly vulnerable to extreme 

precipitation.  

A few studies have examined extreme precipitation trends and projections. For example, the work of  

Rouamba et al. (2023) in the municipality of  Boromo, in the south of  Burkina Faso (Sougué et al. 2023), 

and in ten cities in Burkina Faso addressed the issue of  trends and forecasts of  climatic extremes in recent 

years. Several statistical methods, especially approaches based on the classical theory of  extremes (peak-

on-threshold) and linear regression models, have been used by various authors to understand the 

spatiotemporal trends in climate extremes (Béwentaoré, Barro 2022; Rouamba et al. 2023). Parametric 

regression models have also been used to predict future extreme events using CMIP6 data (Koala et al. 

2023). These studies do not account for trends and seasonality of  the time series of  climate extremes, 

which can bias trends and forecasts of  precipitation extremes.  

Several other advanced forecasting methods are reported in the literature, including the Holt-Winters 

smoothing method, which accounts for trend and seasonality (Nurhamidah et al. 2020). This method has 

advantages, such as reducing the weight of  historical data, and simplicity. Therefore, it has been used in 

several studies in the field of  climatology (Gundalia, Dholakia 2012; Gowri et al. 2022; Bhagat, 

Ramaswamy 2023). This prediction method can make valuable contributions to understanding future 

trends and impacts of  climate change (Pala, Şevgin 2024). The method thus forms the basis of  statistical 

modeling for climate prediction in the region. The general objective of  this study is to analyze the 

evolution of  extreme precipitation indices and their projection from 2020 to 2030 using non-parametric 

smoothing and Holt-Winters methods in three cities in Burkina Faso. The secondary objectives of  this 

study are to: 

• analyze the variability of  extreme precipitation indices over the period 1991-2020; 

• analyze the trends in extreme precipitation indices over the period 1991-2020; 

• determine the projection of  extreme precipitation indices for the period 2020-2030. 

2. Materials and methods 

2.1. Study area 

The study areas are in Burkina Faso, West Africa (Fig. 1). Three cities are considered in the study: Bobo-

Dioulasso, in the urban commune of  the Houet province in the Hauts Bassins region. These cities vary in 

physical characteristics. The soils of  Koudougou, Burkina Faso, are varied. They include leached tropical 

ferruginous soils, often poor in organic matter and nutrients, and lithosols on cuirass, better suited to 



grazing. Hydromorphic soils are also found along watercourses, which are favorable to certain crops. The 

area is affected by soil degradation, with a widening of  the Sahel and a decline in vegetation. The soils in 

Boromo, Burkina Faso, are diverse and include cuirass, hydromorphic, and tropical ferruginous soils. 

These soils have various properties influenced by their origin and environment. Some are suitable for 

agriculture, while others are susceptible to erosion. The soils of  Bobo-Dioulasso, Burkina Faso, are mainly 

characterized by ferralitic soils, tropical ferruginous soils , and eutrophic brown soils. These soils result 

from weathering of  Birrimian rocks and vary according to relief  and topography. In human terms, the 

study towns have different populations.  Bobo-Dioulasso is the second-largest city in Burkina Faso, 

covering an area of  1,805 km2. Its population is >900,000. Koudougou is a medium-sized town, Burkina 

Faso's third-largest city. Its population has been particularly dynamic in recent decades. Its urban 

population has more than quadrupled over the past few decades, from 36,838 in 1975 to 88,184 in 2006 

and 160,239 in 2019 (Sirven 1987; INSD 2011). Boromo is one of  the country's smaller towns. Its urban 

population is estimated at 20,193 (INSD 2011). Unlike other towns, Boromo is facing an influx of  people 

fleeing terrorism in the north of  the country. This situation makes the small town of  Boromo vulnerable 

and exacerbates social problems (Yaméogo et al. 2022). 

These three towns were selected based on three criteria: the availability of  rainfall data over a given period, 

the degree of  missing data over a given period, and the size of  the population potentially affected by 

extreme rainfall. The populations of  these towns have increased considerably as a result of  the security 

crisis in the northern, eastern, and Boucle du Mouhoun areas. 

The topography varies throughout the region. The towns studied have altitudes ranging from 232 to 314 

to >478 m (Fig. 2). 

 

Fig. 1. Geographical location of  study towns and stations. 



 

Fig. 2. The topography of  Burkina Faso. 

2.2. Data and methods 

Daily precipitation data were obtained from the National Meteorological Agency of  Burkina Faso for 

1991-2020 (Table 1). One station was selected for each of  the three towns. The Saria station represents 

the town of  Koudougou, the Boromo station the city of  Boromo, and the Bobo-Dioulasso station the city 

of  Bobo-Dioulasso. 

Table 1. Characteristics of  the selected stations 

Station names Type of  station selected Type of  domain climate 
Period 
selected 

Latitude 
(N) 

Longitude 
(E) 

Bobo-Dioulasso Synoptic station Sudanian 1991-2020 11.1667 –4.3167 

Boromo Synoptic station Sudano-sahelian 1991-2020 11.75 –2.9333 

Saria Climatological station Sudano-sahelian 1991-2018 12.2667 –2.15 

Daily precipitation data were fed into Rclimdex, which produced extreme precipitation indices for the 

period 1991-2020, representing precipitation intensity, precipitation frequency, and precipitation duration. 

RClimDex provides a user-friendly graphical interface for calculating the 27 basic indices recommended 

by the CCl/CLIVAR Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI) 

(Karl et al. 1999; Zhang, Yang 2004). In the present study, 10 indices were selected (Table 2).  



Table 2. Extreme precipitation indices used in the study. Source: Lourdes et al. (2021). 

Index classification Index Description  Unit 

Intensity indices 

precipitation 

Rx1day Maximum precipitation over 1 day mm 

Rx5day Maximum consecutive precipitation over 5 days mm 

SDII Annual total precipitation divided by the number of  wet day mm/day 

prpcptot Total precipitation in wet days ≥ 1 mm mm 

Frequency indices 
precipitation 

R99ptot Number of  days with precipitation ≥ 99th percentile day 

R95ptot Number of  days with precipitation ≥ 95th percentile day 

R10mm Number of  days precipitation ≥ 10 mm day 

R20mm Number of  days precipitation ≥ 20 mm day 

Duration indices 
precipitation 

CDD Maximum number of  consecutive days with precipitation < 1 mm day 

CWD Maximum number of  consecutive days with precipitation ≥ 1 mm day 

The data projections for the 10-year period (2020-2030) were based on the extreme precipitation indices 

extracted from the daily data using Rclimdex. The temporal data for the extreme precipitation indices were 

processed in XLSTAT 2019 using the Holt-Winters method. 

2.2.1. Mann-Kendall Test 

It is a non-parametric test and there is no requirement that the data must be normally distributed (Oufrigh 

et al. 2023). In this test, H0 is the null hypothesis, which states that the data come from a population 

whose observations are independent of  each other and are uniformly distributed , and the alternative to 

H1, which states that the data have a monotone tendency (Aditya et al. 2021). These test values (Xj – Xk) 

where j > k and the test statistic S is calculated by applying the formula (Shah, Kiran 2021): 

𝑆 =∑ ∑ 𝑠𝑔𝑛(𝑋𝑗−𝑋𝑘)
𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1
 (1) 

With, Xj and Xk are the annual values for years j and k, j > k, respectively. 

The sgn function is calculated as follows: 

𝑠𝑔𝑛(𝑋𝑗−𝑋𝑘) = {

1 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 > 0 
0 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 = 0

−1 𝑖𝑓 𝑋𝑗− 𝑋𝑘 < 0
} (2) 

The test statistic, τ, can be calculated as follows: 

𝜏 =
𝑠

𝑛 −
(𝑛 − 1)
𝑧

  
(3) 

In order to statistically quantify the significance of  the trend, it is necessary to calculate the probability 

associated with S and the sample size n. The formula to calculate the variance S is as follows: 



𝑉𝑎𝑟(𝑆) =
1

18
[𝑛(𝑛− 1)(2𝑛 + 5)−∑(𝑡𝑖 −1)(2𝑡𝑖 +5)

𝑚

𝑖=1

] (4) 

Where q is defined as the number of  linked groups and tp is defined as the number of  data items in the 

pth group. The values of  S and Var(S) are used for the calculation of  the test statistic Z, which is: 

𝑍 =

{
 
 

 
 

𝑠 − 1

√𝑉𝑎𝑟(𝑠)
,         𝑖𝑓 𝑠 > 0

0                      𝑖𝑓 𝑠 = 0  
𝑠 + 1

√𝑉𝑎𝑟(𝑠)
,           𝑖𝑓 𝑠 < 0       

}
 
 

 
 

 (5) 

The null hypothesis h0 (no trend) is rejected if  the significance level or p-value is >5%. 

2.2.2. Innovative trend analysis method (ITAM) 

This technique, introduced by Şen (2017), or referred to as new trend analysis (Sezen, Partal 2020), is non-

parametric and its use does not require a normal distribution of  observations (Şen et al. 2019; Mallick et 

al. 2021). It is a very useful tool for detecting trends in precipitation time series data (Pastagia, Mehta 2022; 

Patel, Mehta 2023). In addition, the ITAM is more sensitive in determining the trend than the Mann-

Kendall (MK) test (Mohorji et al. 2017; Sanusi, Abdy 2021; Kessabi et al. 2024). In ITAM, the data series 

is divided into two equal parts such that (Dabanlı et al. 2016; Mohorji et al. 2017; Şen et al. 2019; Marak et 

al. 2020; Kougbeagbede 2024; Muthiah et al. 2024). 

Mathematically, the procedure of  the method is translated as follows (Güçlü 2020): 

• Any data consisting of n data, a1, a2, ..., an is separated into two equal series {b1, n/2} and {b2, n/2}, such as: 

{b1, n/2} = {a1, a2, ..., an/2} (6) 

and 

{b2, n/2} = {an/2+1 + an/2+2, ..., an} (7) 

• Each series with the same number of  elements is then listed in ascending order. The series is named as 

follows: {S1}, et {S2}, with: 

{S1} = {min(b1, n/2), …, b j, …, max(b1, n/2)} (1≺i≺n/2) (8) 

and 

{S2} = {min(b2, n/2), …, b j, …, max(b2, n/2)} (1≺i≺n/2) (9) 

The {S1} data on the horizontal axis are plotted against the values of  the following series: 1, 2, 3, ..., (n/2) 

-1, n/2. 



The data for {S2} are on the vertical axis according to the values: 1, 2, 3, ..., (n/2) -1, n/2. 

According to Mandal et al. (2021), each series is then sorted independently in ascending order. The first 

half  of  the series (Xi) is plotted on the X axis and the second half  of  the series (Yi) is plotted on the Y 

axis. The presence of  a trend is indicated by a 1:1 (45°) line in the scatterplot. The presence of  a trend is 

indicated by a 1:1 (45°) line in the scatterplot. Coordinates on the 45° line indicate no trend, below it a 

negative trend, and above it an upward trend (Dabanli et al. 2016; Almazroui et al. 2019; Chowdari et al. 

2023; Yaméogo 2025). A detailed interpretation of  the ITAM is given in Figure 3 below, based on data 

from the present study at the Bobo-Dioulasso station. 

 

Fig. 3. Different interpretations of  ITAM's results. 

2.2.3. Slope (S) of  ITAM 

The slope trend S is calculated using the following expression (Şen 2017): 

𝑆 =
2 ∗ (𝑌̅2− 𝑌̅1)

𝑛
 (10) 

Where, 𝑌̅1 and 𝑌̅2 are the arithmetic means of  the first series and the second half  of  the series of  the 

dependent variable, and n is the number of  data points. 

2.2.3. The Percentage Bias Method (PBM) 

The percentage bias method was used to estimate the percentage change in precipitation in the second 

half  of  the time series compared with the first half  (Mandal et al. 2021): 

𝑃𝑀𝐵 = 100−∑
𝑌𝑖
𝑋𝑖

𝑛

𝑖=1

× 100 (11) 



Where PBM is the percentage bias, n is the total extent of  the sub-series separately, Xi and Yi are the 

values of  the observation data in the first and second sub-series, respectively. Positive and negative PBM 

values indicate increasing and decreasing trends, respectively, for the first sub-series. 

2.2.4. Holt-Winters exponential smoothing model 

The Holt-Winters method, which allows the seasonal model to adapt over time, is one of  the best-known 

forecasting techniques (Lawton 1998). It involves estimating three smoothing parameters associated with 

level, trend, and seasonal variables (Atoyebi et al. 2023). Designed for trend and seasonal time series, the 

Holt-Winters method is a commonly used tool for forecasting trade data containing seasonality, changing 

trends, and seasonal correlation (Gelper et al. 2010). Several studies (Irwan et al. 2023) have also used this 

method to forecast hydro-climatological data series. The Holt-Winters approaches are modeled in one of  

two ways: additive or multiplicative (Koehler et al. 2001; Thomasson 2017; Natayu et al. 2022). 

2.2.5. Holt-Winters seasonal additive model 

The Holt-Winters additive method, which has a linear trend and constant seasonal variation (additive), has 

a prediction composed of  the level (Lt), trend (bt), and seasonal variation (st) (Puah et al. 2016). The 

additive model incorporates seasonality but with the addition of  a trend as follows (Pertiwi 2020; Wiguna 

et al. 2023): 

• Level: 

𝐿𝑡 = 𝛼(𝑌𝑡− 𝑠𝑡−𝑐)+ (1 − 𝛼)(𝐿𝑡−1 −𝑏𝑡−1) (12) 

• Trend: 

𝑏𝑡 = 𝛽(𝐿𝑡 −𝐿𝑡−1) +  (1 − 𝛽)𝑏𝑡−1 (13) 

• Seasonal: 

𝑠𝑡 = 𝛾(𝑌𝑡−𝐿𝑡)+ (1− 𝛾)𝑠𝑡−𝑐 (14) 

The prediction for period Ft+m is: 

𝐹𝑡+𝑚 = 𝐿𝑡 +𝑏𝑡𝑚+ 𝑠𝑡−𝑠+𝑚 (15) 

The smoothing parameters, α, β, and γ have values that vary between 0 and 1. In this study, the 

parameters are fixed at 0.2. This means that the prediction is flexible, i.e. strongly influenced by the most 

recent observations. 

2.2.6. Multiplicative Holt-Winters method (MHW) 

The multiplicative model is used if the data show variable seasonal fluctuations , and the different 

equations are as follows (Pleños 2022; Irwan et al. 2023; Wiguna et al. 2023): 

• Level: 

𝐿𝑡 = 𝛼
𝑌𝑡

𝑆𝑡−𝑠
+ (1 − 𝛼)(𝐿𝑡−1 +𝑏𝑡−1) (16) 



• Trend: 

𝑏𝑡 = 𝛽(𝐿𝑡−𝐿𝑡−1) + (1− 𝛽)𝑏𝑡−1 (17) 

• Seasonal: 

𝑆𝑡 = 𝛾
𝑌𝑡

𝐿𝑡
+ (1 − 𝛾)𝑆𝑡−𝑠 (18) 

The prediction period t is : 

𝑆𝑡 = 𝐹𝑡+𝑚 = (𝐿𝑡 +𝑏𝑡𝑚)𝑆𝑡−𝑠+𝑚 (19) 

The smoothing parameters, α, β, and γ have values that vary between 0 and 1. In this study, the 

parameters are fixed at 0.2. This means that the prediction is flexible. 

Where, Yt – level in the 2nd period t; Lt-α – level in the 2nd period t-1; bt – trend in the 2nd period t; bt-1 – 

trend in the 2nd period t-1; St – seasonality in the 2nd factors; Yt – data in the 2nd period t; s – seasonal 

period; t – seasonal period; m – predictive time period. 

2.2.7. Analysis of  the Holt-Winters model performance 

Goodness of  fit is a critical criterion for assessing the accuracy of  a predicted model relative to the true 

value (Atoyebi et al. 2023). Mean error (ME), MSE (mean squared error), RMSE (root mean squared error) 

and MAPE (mean absolute percentage error), mean absolute deviation (MAD), and mean squared 

deviation (MSD) have typically been used to examine model performance (Pinel 2020; Atoyebi et al. 2023). 

Other valuation parameters are also considered, such as the mean square error (MSE), the root mean 

square error (RMSE), and the mean absolute error (MAE). However, the use of  MAD and MSD as 

indicators of  prediction accuracy can be problematic in that they do not facilitate comparisons between 

different time series or time intervals, and the absolute measures MAD and MSD are affected by the size 

of  the time series data (Atoyebi et al. 2023). The statistics MAD and MSE, provide no guidance on 

whether the model is good or not. This makes it impossible to use both measures (Gundalia, Dholakia 

2012). Therefore, MAPE is used in studies as a valid indicator of  model performance (Gundalia, Dholakia 

2012; Puah et al. 2016). MAPE is also used in this study. MAPE consists of  dividing the absolute error of  

each period by the true value of  that period and calculating an average percentage of  absolute errors 

(Wiguna et al. 2023). The mathematical formula used to calculate MAPE is as follows (Wiguna et al. 2023): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝐴𝑡 −𝑌𝑡
𝐴𝑡

|

𝑛

𝑡=1

× 100% (20) 

With, At – actual data; Yt – forecasting data; n – number of  periods. Prediction performance is interpreted 

using a prediction rating scale (Table 3). A summary of  the methods used in the study is presented in 

Figure 4. 



Table 3. Prediction model performance assessment scale (Gowri et al. 2022; Pinel 2020). 

MAPE Scale of  interpretation Significance 

<10% The ability to predict is very good xxxxx 

10-20% Good ability of  the model for prediction  xxxx 

20-50% The predictive ability of  the model is feasible xxx 

>50% Poor ability of  the prediction model x 

 

Fig. 4. Data and methods used in the study. 

3. Results 

3.1. Descriptive statistics and test of  extreme precipitation indices between 1991 and 2020 

Table 4 shows that the extreme precipitation indices are highly variable for the Bobo-Dioulasso and 

Boromo stations and moderately variable for the Saria station over the period 1991-2020. The variability is 

particularly high for indices such as: r99ptot, r95ptot, cwd, R20mm, and Rx1day. Furthermore, the 

descriptive statistics show that the maxima and minima are relatively higher at the Bobo-Dioulasso station 

than at the other stations (Boromo and Koudougou). This difference could be explained by the climatic 

range of  the stations. The Bobo-Dioulasso station is in the Sudanese zone (with precipitation of  more 

than 900 mm per year). On the other hand, the other stations have low annual precipitation, which varies 

between 600 mm and 900 mm. 

3.2. Trends in the indices of  extreme precipitation between 1991 and 2020: an analysis 

using the Mann-Kendall test 

The Mann-Kendall test shows that there was no trend in the extreme precipitation indices in the three 

cities of  Burkina Faso over the period 1991-2020 (Table 5). The fact remains that a trend was observed 

for the frequency index (r99ptot) in the Bobo-Dioulasso station. 



Table 4. Descriptive statistics for extreme precipitation indices from 1991 to 2020. 

Station Variable Minimum Maximum Mean Standard deviation CV 
B

o
b
o

-D
io

u
la

ss
o

 

Rx1day 38.1 114 68.9 18.1 26.27 

Rx5day 61.1 208 120.5 33.1 27.47 

sdii 10.2 18.5 14.3 2.1 14.69 

prcptot 675.1 1361.9 1024.7 176.6 17.23 

R10mm 25 45 34.4 5.5 15.99 

R20mm 11 26 18.2 3.8 20.88 

R95ptot 0 568.7 209.1 142.5 68.15 

R99ptot 0 263.7 57.1 74.5 130.47 

cdd 61 106 80.3 11 13.70 

cwd 3 12 5.3 1.9 35.85 

 Variable Minimum Maximum Mean Standard deviation CV 

B
o
ro

m
o

 

Rx1day 44.2 134 75.7 26 34.35 

Rx5day 64.3 216.5 114.6 31.8 27.75 

SDII 10 17.5 14.3 1.8 12.59 

prcptot 643.1 1128.8 915.8 136.3 14.88 

R10mm 23 38 31.3 3.9 12.46 

R20mm 8 23 16 3.6 22.50 

R95ptot 44.2 434.4 199.9 110 55.03 

R99ptot 0 228 65 75 115.38 

cdd 50 117 82.4 15.4 18.69 

cwd 3 10 5 1.7 34 

 Variable Minimum Maximum Mean Standard deviation CV 

K
o
u
d
o
u
go

u
 

Rx1day 50 127 73.1 19.2 26.27 

Rx5day 64 172 115.6 26.2 22.66 

SDII 10.8 17.7 14.3 1.5 10.49 

prcptot 624.8 1151.6 825.3 111.6 13.52 

R10mm 21 34 27.3 3.6 13.19 

R20mm 1 4 2 1 50 

R95ptot 54 307 174.2 75.7 43.46 

R99ptot 0 198 54.9 58.7 106.92 

cdd 63 133 92.8 18 19.40 

cwd 2 8 4.6 1.5 32.61 

 

  



Table 5. Trend in extreme precipitation indices using the Mann-Kendall test. 
B

o
b
o

-D
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u
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ss
o
 s
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ti
o
n

 

Index classification Indices 
Kendall's 

Tau 
S Var(S) p-value Trend 

Trend 

direction 

Intensity indices 

Precipitation 

rx1day 0.166 72.000 3140.667 0.205 no - 

rx5day 0.124 54.000 3140.667 0.344 no - 

sdii 0.136 59.000 3141.667 0.301 no - 

prcptot 0.103 45.000 3141.667 0.432 no - 

Frequency indices 
Precipitation 

r10mm 0.082 35.000 3121.667 0.543 no - 

r20mm 0.071 30.000 3104 0.603 no - 

r95ptot 0.058 25.000 3137 0.668 no - 

r99ptot 0.262 97.000 2648.333 0.049 Yes increase 

Duration indices 
Precipitation 

cdd 0.058 25.000 3133.667 0.668 no - 

cwd 0.191 73.000 2881 0.180 no - 

B
o
ro

m
o
 s

ta
ti
o
n

 

Intensity indices 
Precipitation 

rx1day -0.018 -8.000 3140.667 0.901 no - 

rx5day 0.085 37.000 3141.667 0.521 no - 

sdii 0.154 67.000 3141.667 0.239 no - 

prcptot 0.071 31.000 3141.667 0.592 no - 

Frequency indices 
Precipitation 

r10mm 0.093 39.000 3091.667 0.494 no - 

r20mm 0.165 69.000 3093 0.221 no - 

r95ptot 0.071 31.000 3141.667 0.592 no - 

r99ptot -0.140 -53.000 2732.333 0.320 no - 

Duration indices 

Precipitation 

cdd -0.028 -12.000 3134 0.844 no - 

cwd 0.003 1.000 2708.333 1.000 no - 
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Intensity indices 

Precipitation 

rx1day 0 0.000 2558 1.000 no - 

rx5day -0.130 -49.000 2561 0.343 no - 

sdii 0.212 80.000 2562 0.119 no - 

prcptot -0.074 -28.000 2562 0.594 no - 

Frequency indices 
Precipitation 

r10mm -0.125 -46.000 2532.667 0.371 no - 

r20mm 0.076 25.000 2332.333 0.619 no - 

r95ptot 0.011 4.000 2562 0.953 no - 

r99ptot 0.036 12.000 2293.333 0.818 no - 

Duration indices 
Precipitation 

cdd -0.051 -19.000 2557 0.722 no - 

cwd -0.064 -22.000 2432.667 0.670 no - 

3.3. Trends in the indices of  extreme precipitation between 1991 and 2020: an analysis 

using the innovative trend method 

The innovative template trends method shows clear trends in the precipitation extremes indices according 

to the study stations. 

3.3.1. Trends in the indices of  extreme precipitation in the city of  Bobo-Dioulasso 

At this station, especially in the city of  Bobo-Dioulasso, the precipitation intensity indices are increasing 

for prptot, rx5day, and sdii; rx1day decreased non-monotonically. For the extreme precipitation frequency 

indices, the trends are non-monotonic for r20mm, r10mm, and monotonic for r95ptot and r99ptot. 



Conversely, the duration indices (cdd and cwd) are non-monotonic. Figure 5 summarises the trends of the 

extreme precipitation indices for the city of  Bobo-Dioulasso over the period 1991-2020. 

Figures 5b, 5c, and 5d, which group together precipitation intensity indices, show increases, in contrast to 

Figure 5a. The same applies to precipitation frequency indices. Figures 5f, 5g, and 5h, (but not 5e), are also 

increasing over the period 1991-2020. For the precipitation duration index, Figure 5i shows an increasing 

trend, while Figure 5j shows a non-monotonic increasing trend. The trends in extreme precipitation are 

increasing overall, and this situation could be explained by the climatic range in which the Bobo-Dioulasso 

station is located. The station is in the Sudanian zone, with annual precipitation in excess of  900 mm. 

 

Fig. 5. Template trends of  the extreme precipitation indices (station of  Bobo-Dioulasso).  



3.3.2. Trends in the indices of  extreme precipitation in the city of  Boromo 

Figure 6 shows the graphical trends at the Boromo station in the town of  Boromo. The precipitation 

intensity indices (Fig. 6b, 6c, 6d) increase monotonically. The precipitation frequency indices (Fig. 6e, 6f, 

6h) are also increasing, with the exception of  Figure 6g, which shows a non-monotonically increasing 

trend. In addition, the trends are non-monotonically decreasing in Figure 6i and non-monotonically 

increasing in Figure 6j. 

 

Fig. 6. Template trends of  the extreme precipitation indices (Boromo station). 

  



3.3.3. Trends in the indices of  extreme precipitation in the city of  City of  Koudougou 

The graphical trends of  the extreme precipitation indices for the Saria station are more non-monotonic 

(Fig. 7). Extreme precipitation at the Saria station (city of  Koudougou) shows unclear, even decreasing 

trends for precipitation duration indices, unlike the other two stations studied. This situation could be 

explained by the station's location in the Sudano-Sahelian region, where precipitation varies between 600 

mm and 900 mm per year. 

 

Fig. 7. Template trends of  the extreme precipitation indices (station Saria). 



3.4. Future projections of  extreme precipitation indices for cities in Burkina Faso from 

2020 to 2030  

It is necessary to assess the performance of  the Holt-Winters model to analyze the predicted precipitation 

indices for the three cities. Two models, additive and multiplicative, were used to assess the accuracy of  

the models proposed for each station. The prediction period is 10 years, specifically 2020-2030. 

3.4.1. The case of  the city of  Bobo-Dioulasso (Bobo-Dioulasso station) 

Table 6 shows that the additive Holt-Winters model is more accurate than the multiplicative Holt-Winters 

model based on the MAPE results. Nevertheless, the additive model does not fit R95ptot and R99ptot 

very well, with values of  86.05 and 73.7, respectively, indicating poor predictive ability of  the model for 

these two indices. However, this model is more appropriate for the other extreme precipitation indices. 

This disparity leads to the use of  the Holt-Winters additive model to analyze the future evolution of  the 

extreme indices. 

3.4.2. The case of  the city of  Boromo (Boromo station) 

The performance of  the additive and multiplicative models , according to MAPE, shows better accuracy 

for the additive model compared to the multiplicative model (Table 7). However, as at the Bobo-Dioulasso 

station, the additive model does not correctly adjust indices such as r95ptot and r99ptot. 

3.4.3. The case of  the city of  Koudougou (Saria station) 

As with the two stations above, the extreme precipitation index data applied to the additive and 

multiplicative models shows that the additive model provides a better fit for the extreme precipitation 

indices at the Saria station (Table 8). 

 

 

  



Table 6. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Bobo-Dioulasso 

station. 

Index 
Model 

parameters 
Observation DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 8131.8 580.84 24.10 24.27xxx -8.124 14.3 

rx5day 0.2 0.2 0.2 30 14 41235 2945.36 54.3 37xxx -13.686 37.8 

sdii 0.2 0.2 0.2 30 14 172.5 12.32 3.5 18xxxx -1.628 2.5 

r10mm 0.2 0.2 0.2 30 14 1398.7 99.91 10 20.5xxx 0.409 7.3 

r20mm 0.2 0.2 0.2 30 14 586.8 41.91 6.5 30.6xxx -4.505 5.1 

cdd 0.2 0.2 0.2 30 14 4441.5 317.25 17.8 14.3xxxx -1.094 11.8 

cwd 0.2 0.2 0.2 30 14 98.073 7 2.65 37.8xxx -1.915 1.9 

R95ptot 0.2 0.2 0.2 30 14 913811 65272.2 255.5 86.05x -10.94 198 

R99ptot 0.2 0.2 0.2 30 14 147205 10515 102.5 73.7x 21.68 70.8 

prcptot 0.2 0.2 0.2 30 14 1074813 76772 277.07 20.9xxx -0,590 205.3 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observation DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 8543.4 610.2 24.7 26.2xxx -11.2 15.5 

rx5day 0.2 0.2 0.2 30 14 45638.6 3259.9 57.1 37.8xxx -20.2 36.4 

sdii 0.2 0.2 0.2 30 14 171.1 12.2 3.5 18xxxx -3.5 2.5 

r10mm 0.2 0.2 0.2 30 14 1371.1 97.9 9.9 21.7xxx -2.3 7.6 

r20mm 0.2 0.2 0.2 30 14 574.2 41 6.4 31xxx -8.8 5.1 

cdd 0.2 0.2 0.2 30 14 5077.8 362.7 19 16xxxx -2.9 13.1 

cwd 0.2 0.2 0.2 30 14 113.4 8.1 2.8 39.7xxx -13.5 2 

r95ptot 0.2 0.2 0.2 30 14 1139410 81386.5 285.3 100.6x -43.6 213 

R99ptot 0.2 0.2 0.2 30 14 170915.7 12208.3 110.5 83x 15 71.9 

prptot 0.2 0.2 0.2 30 14 1027791 73413.6 270.9 20.9xxx -3 203.4 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

x: Bad forecasting model ability 

  



Table 7. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Boromo station. 

Index 
Model 

parameters 
Observations DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 31164.6 2226 47.2 48.3xxx -9.4 33.9 

rx5day 0.2 0.2 0.2 30 14 48533 3466.6 59 37.9xxx -7.6 44.3 

sdii 0.2 0.2 0.2 30 14 163 11.6 3.4 18.4xxxx -1.0 2.7 

r10mm 0.2 0.2 0.2 30 14 863.1 61.6 7.9 19.1xxxx -2.5 6 

r20mm 0.2 0.2 0.2 30 14 475 34 5.8 25.8xxx -3.2 4.3 

cdd 0.2 0.2 0.2 30 14 8619 615.6 24.8 21.7xxx -3.8 16.6 

cwd 0.2 0.2 0.2 30 14 118 8.4 2.9 38.9xxx -11.2 1.8 

r95ptot 0.2 0.2 0.2 30 14 681573 48684 220.6 115.9x -55.2 162.4 

r99ptot 0.2 0.2 0.2 30 14 301900 21564.3 146.8 106.3x 73.7 111.7 

prcptot 0.2 0.2 0.2 30 14 102563 73259.4 270.7 23.4xxx -2.2 212.2 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observations DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 33035 2359.6 48.5 53.7x -27.2 35.6 

rx5day 0.2 0.2 0.2 30 14 60375 4312.5 65.7 44.1xxx -18.8 49.9 

sdii 0.2 0.2 0.2 30 14 189.2 13.5 3.6 20xxxx -3.8 2.9 

r10mm 0.2 0.2 0.2 30 14 988 70.5 8.4 20.2xxx -5.3 6.3 

r20mm 0.2 0.2 0.2 30 14 682.5 48.7 6.9 31.2xxx -10.3 5.1 

cdd 0.2 0.2 0.2 30 14 8916 636.8 25.2 22.3xxx -5.8 16.9 

cwd 0.2 0.2 0.2 30 14 135.4 9.6 3.1 44.1xxx -22.01 1.9 

r95ptot 0.2 0.2 0.2 30 14 1815688 129691.9 360.1 211.8x -177.9 244.5 

R99ptot 0.2 0.2 0.2 30 14 167615 11972.4 109.4 64.1x 63.6 77.6 

prcptot 0.2 0.2 0.2 30 14 1228361 87740 296.2 25.2xxx -6.6 226.3 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

x: Bad forecasting model ability 

  



Table 8. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Boromo station. 

Index 
Model 

parameters 
Observations DDL SCE MCE 

RMC
E 

MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 28 12 10161.9 846.8 29.1 27.7xxx -1.8 21.4 

rx5day 0.2 0.2 0.2 28 12 17430.9 1452.6 38.1 21.7xxx -5.6 24.3 

sdii 0.2 0.2 0.2 28 12 41.5 3.5 1.9 8.9xxxxx 2.2 1.3 

r10mm 0.2 0.2 0.2 28 12 640.5 53.4 7.3 20.4xxx -1.9 5.6 

r20mm 0.2 0.2 0.2 28 12 33.3 2.8 1.7 53.8x -17.3 1.1 

cdd 0.2 0.2 0.2 28 12 15067 1255.6 35.4 31xxx -2.5 26.5 

cwd 0.2 0.2 0.2 28 12 135 11.3 3.4 68.2x -28.5 2.5 

r95ptot 0.2 0.2 0.2 28 12 147144 12262 110.7 43.1xxx -5 75.6 

r99ptot 0.2 0.2 0.2 28 12 67676.3 5639,7 75.1 71.9x 17.8 53.1 

prcptot 0.2 0.2 0.2 28 12 553259 46101 214.7 19.3xxxx -0.9 160.2 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observations DDL SCE MCE 

RMC

E 
MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 28 12 13309.3 1109.1 33.3 31.3xxx -11.5 23.6 

rx5day 0.2 0.2 0.2 28 12 18357 1529.7 39.1 22.5xxx -9.7 24.7 

sdii 0.2 0.2 0.2 28 12 38.2 3.2 1.8 8.6xxxxx 1.8 1.3 

r10mm 0.2 0.2 0.2 28 12 672 56 7.5 20.6xxx -4.3 5.6 

r20mm 0.2 0.2 0.2 28 12 65.6 5.5 2.3 77.7x -52.1 1.5 

cdd 0.2 0.2 0.2 28 12 14366.2 1197.2 34.6 30.8xxx -7.2 26 

cwd 0.2 0.2 0.2 28 12 157.4 13.1 3.6 74x -49.6 2.5 

R95ptot 0.2 0.2 0.2 28 12 315065 26255.4 162 62.2x -38.4 110.7 

R99ptot 0.2 0.2 0.2 28 12 75320.3 6276.7 79.2 83x 38 59.4 

prcptot 0.2 0.2 0.2 28 12 521007 43417 208.4 19xxxxx -3.8 155.5 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

X: Bad forecasting model ability 

  



3.5. Projection trajectories between 2020 and 2030 for extreme precipitation indices  

Because the additive model is a better fit to the extreme precipitation index data from the study stations, 

this model is adopted for future predictions for the period 2020-2030. In addition, the fit of  the model 

varies between the study stations. Therefore, the analyses are based on the study stations. 

3.5.1. The case of  the city of  Bobo-Dioulasso (Bobo-Dioulasso station) 

The results of  the predictions for the 2030 period show that the precipitation intensity indices (rx1day, 

r5day, sdii, and prcptot) and the precipitation frequency indices (r10mm, r20mm, r95ptot, r99ptot) will 

increase between 2020 and 2030. The situation is different for the precipitation duration indices , with 

CDD steadily increasing until 2030 and CWD decreasing over the same period (Fig. 8). In the figure, blue 

indicates observed precipitation extremes, and red lines indicate the Holt-Winters prediction of  

precipitation extremes. The dotted green line indicates the trend. The figure shows that the indices rx5day 

and cwd display downward trends until 2030. On the other hand, the other indices (rx1day, sdii, prcpot, 

r10mm, r20mm, r95pot, r99pot) show increasing trends until 2030. Given this situation, flooding and 

water-borne diseases are likely to be a problem in the city in the coming years. 

3.5.2. The case of  the city of  Boromo (Boromo station) 

At this station, precipitation intensity and duration indices are increasing (Fig. 9). However, the 

precipitation frequency indices show different trends. R10mm and r99ptot decrease, while r20mm and 

r95ptot increase from 2020 to 2030. 

3.5.3. The case of  the city of  Koudougou (Saria station) 

The precipitation intensity indices show different trends. In fact, rx1day and rx5day are decreasing, while 

sdii and prcptot increase continuously from 2020 to 2030. The same is true for the precipitation frequency 

indices, which show a decreasing trend for r10mm, r95ptot, and r99ptot. The only frequency index that 

increases is r20mm. In addition, the precipitation duration indices increase from 2020 to 2030. The city of  

Koudougou should suffer less from climatic disasters than the other two cities, in the sense that intensity 

and frequency are low over the period 2020-2030. However, the increase in precipitation duration will be 

detrimental to farmers on the outskirts of  the city and urban market gardeners. Figure 10 shows the 

changes in extreme precipitation indices from 2020 to 2030. The figure shows that two forecast trends are 

also noticeable at the Saria station. In contrast to the other stations, the forecast trends are more negative 

than positive. The downward trends are represented by Figure 10 (rx1day), (rx5day). Conversely, Figure 10 

(sdii), (prcptot), (r20mm), and (cdd) shows upward trends. Thus, the city of  Koudougou may be less 

affected by extreme precipitation than the other two cities of  Bobo-Dioulasso and Boromo. 



 

Fig. 8. Predictions of  the changes in the indices of  extreme precipitation for the station of  Bobo-Dioulasso. 



 

Fig. 9. Predictions of  the changes in the indices of  extreme precipitation for the station of  Boromo. 



 

Fig. 10. Predictions of  the changes in the indices of  extreme precipitation for the station of  Saria. 

  



4. Discussion 

4.1. Analysis of  inter-annual variability and trends in extreme precipitation indices in 

West Africa 

Time series are records of  processes that change over time (Ihaka 2005). This study has shown strong 

variability in extreme precipitation indices at the three study stations. In addition, the extreme precipitation 

indices showed a continuous increase from 1991 to 2020. The results confirm the work of  other authors 

in Burkina Faso and West Africa (Bigi et al. 2018). Indeed, extreme precipitation indices such as rx1day, 

rx5day, prcptot, and sdii increased and r95ptot decreased from 1991 to 2021 in the Boucle du Mouhoun 

region of  Burkina Faso (Rouamba et al. 2023). Yanogo and Yaméogo (2023) also note that indices such as 

prcptot and r95ptot are increasing for the Ouahigouya station in Burkina Faso. These results are 

confirmed by the study of  Tazen et al. (2019) in Burkina Faso, which showed an upward trend in indices 

such as Rx1day, Rx5day, and r99ptot from 1961 to 2015. This trend has also been observed in other West 

African countries by various authors. In Niamey, Niger, the same indices (rx1day, rx5day, prcptot) also 

increased between 1990 and 2020 (Bassirou et al. 2023). Bigi et al. (2018) add that a similar trend was 

observed in Niamey city (Niger) between 1980 and 2009. This confirms the studies by Konate et al. (2023) 

in Côte d'Ivoire during 1961-2015. Indeed, the authors note that indices such as prcptot, sdii, rx1day, 

rx5day, r20mm, r95ptot, and r99ptot increased in Ivorian cities (Gagnoa, Daloa, Yamoussoukro), while 

cdd and cwd decreased between 1961 and 2015. In other cities (Korhogo, Odienné, Bondoukou, Man, 

Abidjan, Adiaké, San-Pedro, Tabou, Sassandra), indices such as prcptot, sdii, CDD, CWD, R10mm, and 

R20mm show significantly negative trends (Konate et al. 2023). The exception is San-Pedro, which shows 

significantly positive trends for the prcptot, sdii, CDD, and R10mm indices. This situation shows that 

when the zones are located in the Ivory Coast's Sudanese-type climate, the trends of  the indices are 

negative. On the other hand, when the zones are located in the Baulean-type climate zones, the extreme 

precipitation indices tend to show positive trends overall. Furthermore, in the Attean climate, the 

precipitation indices are positive overall. It is therefore clear that the trends vary according to the climatic 

zone, a situation that is also revealed by the results of  the zones studied using the innovative method. 

4.2. Analysis of  the predictions of  the extreme precipitation index  

Forecasting precipitation is important for two reasons: it is a major scientific challenge, but it is also 

crucial for planning and developing agricultural strategies (Graham, Mishra 2017). In the study cities, 

precipitation intensity and frequency indices are expected to increase between 2020 and 2030 in the large 

city of  Bobo-Dioulasso, the medium-sized city of  Koudougou, and the small city of  Boromo. However, 

the city of  Koudougou should be less affected than the other two cities, as many extreme indices such as 

cdd, r95ptot, r99ptot, r10mm, rx1day and rx5day will decrease continuously until 2030. These results are 

consistent with those for Africa (Abiodun et al. 2017). Indeed, the authors note that coastal cities will 

experience an increase in extreme precipitation indices, with cities such as Maputo, Logos, and Port Said 

expected to experience an increase in the intensity and frequency of  extreme precipitation between 2081 

and 2100. Other authors, such as Biasutti (2013) and Trepekli et al. (2019), note that precipitation is 



expected to be concentrated in more intense extreme precipitation events, interspersed with long periods 

of  low precipitation over the West African Sahel. Another study conducted in Africa by Habiyakare et al. 

(2024) confirms the findings of  the previous authors. In fact, according to these authors, West Africa, 

East Africa, and the eastern part of  South Africa show an increasing trend in extreme precipitation, and 

changes in extreme precipitation indices show a general increase in the occurrence and frequency of  

extreme precipitation indices in all scenarios by the end of  the 21st century. 

4.3. The sources of  uncertainty and limitations of  the methods 

Precipitation in Burkina Faso tends to be erratic from month to month and season to season. This makes 

it difficult to make accurate forecasts. The Holt-Winters exponential smoothing method is therefore used 

in this study. This method has clear advantages because it accounts for trends and seasonality (Pongdatu, 

Putra 2018), which corresponds to the characteristics of  precipitation in the tropics. This situation has led 

other authors (Pertiwi 2020) to use this method in the tropics. However, this method has shortcomings 

that need to be considered. The method is deterministic because for each point in the future, the forecast 

provides a single value that approximates the future outcome. It does not allow other possibilities to be 

considered. In addition, exponential smoothing forecasting techniques only consider historical data, which 

means that they ignore any information that may be generated at the same time (Pardoux, Goldfarb 2013). 

Pinel (2020) adds that the Holt-Winters method has three major shortcomings: first, there is no guarantee 

that the method is optimal for a given data series; exponential smoothing methods are sometimes far from 

optimal. In addition, forecasts are more accurate in the short term (a few years). On the other hand, they 

cannot provide forecast intervals, i.e. an interval containing the forecast with a given probability. This is 

because a probabilistic framework has not yet been defined. Thus, the results of  the forecasting study are 

limited. Indeed, if  the period considered is intermediate (2020-2030), the forecasts of  the Holt-Winters 

method become less accurate as the time considered is extended. In this study, therefore, the forecast for 

the first five years (2020-2025) is more accurate than that for the remaining five years (2025-2030). In 

addition, the data analysis is done with software that only allows models of  deterministic precision as 

mean square error, and the choice of  parametric models is limited to 0.2 α, β, and γ. These constraints do 

not allow for any flexibility in the accuracy of  the forecasts. Nevertheless, our results provide decision-

makers with an indication of  the evolution of  extreme precipitation indices over the period 2020-2030, 

with greater accuracy between 2020 and 2025, given the short-term option of  the forecasting method. 

5. Conclusions 

The study analyzed the trends and projected trajectories of  extreme precipitation indices in the cities of  

Burkina Faso. The precipitation intensity and frequency indices are variable, with an upward trend for the 

cities of  Bobo-Dioulasso, Boromo, and Koudougou. Template trends also show a steady increase in 

precipitation intensity and frequency indices for the cities of  Bobo-Dioulasso and Boromo. For the city of  

Koudougou, a non-monotonic increasing trend is observed for the precipitation intensity and frequency 

indices. The rain duration indices show a non-monotonic decreasing trend. The Holt-Winters method can 



be used to make short-term predictions. This method was used to predict extreme precipitation indices 

between 2020 and 2030, which are increasing for the intensity and frequency indices in the cities of  Bobo-

Dioulasso and Boromo. However, the indices have relatively high variability, accompanied by an upward 

trend over the period 2020-2030. Under these conditions, the authorities in the affected towns should give 

absolute priority to widening the gutters to allow rainwater to drain away. In addition, the town of  

Boromo is in a special situation compared to the others, since its population has increased in response to 

internal migration caused by terrorism in the country. The migrants have settled in flood-prone areas, and 

the local authorities should encourage them to move away from easily flooded areas. 
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