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Abstract 

This study evaluates the performance of several bias correction techniques applied to CMIP6 precipitation simulations over Sudan 

for the period 1991-2014, using the high-resolution CHIRPS observational dataset as a reference. Four widely used bias 

correction methods: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM), Local Intensity Scaling 

(LOCI), and the Delta Method were applied to ten CMIP6 models to assess their ability to reduce systematic biases and improve 

consistency with observed climatology. The raw simulations reveal pronounced seasonal biases, characterized by overestimation 

during the pre-monsoon season (MAM) and underestimation during the monsoon season (JJAS), whereas annual biases are 

moderate but exhibit notable spatial heterogeneity. Among the tested techniques, EQM and Gamma-QM consistently yield the 

most effective corrections, achieving median bias reductions of 94-100% across both annual and seasonal timescales, and 

markedly enhancing Kling–Gupta Efficiency (KGE) values. Among the evaluated models, EC-Earth3, GFDL-ESM4, and INM-

CM4-8 demonstrate the best performance annually and during June-September, whereas NESM3 performs better during March-

May, highlighting model-specific strengths in simulating seasonal precipitation variability. Spatial analyses further confirm that bias 

corrections effectively align precipitation variability with observations, with statistically significant improvements across most 

regions of Sudan. These findings highlight the critical role of quantile-based correction methods in producing reliable CMIP6 

precipitation outputs over Sudan and establish a robust framework for assessing both model skill and bias correction performance 

in regions characterized by complex, seasonally varying rainfall regimes. 
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1. Background and motivation 

Precipitation is a fundamental component of the hydrological cycle, supporting agricultural productivity, 

water resource management, and ecosystem sustainability. Sudan exhibits pronounced climatic variability, 

ranging from hyper-arid desert conditions in the north to semi-humid savannahs in the south. Under-

standing precipitation patterns and variability is therefore essential for mitigating drought impacts, ensur-

ing food security, and developing effective climate adaptation strategies in this highly climate-sensitive re-

gion. However, the sparse and uneven distribution of ground-based meteorological stations across Sudan 

limits the accurate reconstruction of historical precipitation records and constrains the assessment of cli-

mate-related risks (Funk et al. 2015). 

Global Climate Models (GCMs), including those developed under the Coupled Model Intercomparison 

Project Phase 6 (CMIP6), provide valuable insights into past and future climate conditions. Nonetheless, 

these models often exhibit systematic biases when simulating regional precipitation, particularly in arid and 



semi-arid regions (Eyring et al. 2016). Such biases can significantly affect the reliability of model-based 

precipitation estimates and increase uncertainties in hydrological modeling and climate impact assess-

ments. To overcome these limitations, bias correction techniques are widely applied to statistically adjust 

GCM outputs, aligning them more closely with observed data (Gudmundsson et al. 2012; Maraun 2013). 

Despite the growing use of bias correction methods, comprehensive evaluations focusing specifically on 

Sudan remain scarce (Gebrechorkos et al. 2019). The country’s steep climatic gradients and high spatial 

and temporal rainfall variability pose unique challenges for model calibration and correction. While studies 

across East Africa have shown that bias adjustment improves model performance, systematic assessments 

for Sudan, where observational networks are particularly limited, are still lacking. This gap highlights the 

need for detailed regional analyses to identify the most effective bias correction techniques for improving 

precipitation simulations and supporting climate resilience planning (Siddig et al. 2022). 

2. Objectives and scope 

Bias correction techniques enhance the reliability of climate model outputs by reducing systematic errors 

and improving alignment with observed climatology. Such adjustments are especially important for 

General Circulation Model (GCM) analyses, where uncorrected biases can substantially limit the 

usefulness of model projections. This study evaluates the performance of four widely used bias correction 

methods: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM), Local Intensity 

Scaling (LOCI), and the Delta Method. These methods were applied to monthly precipitation simulations 

from ten CMIP6 models over Sudan during the 1991-2014 historical period. The Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) is the observational benchmark for assessing each 

method’s effectiveness. Model performance is quantified using multiple complementary statistical metrics, 

including the Pearson correlation coefficient, centered root-mean-square deviation (CRMSD), mean bias, 

and Kling–Gupta Efficiency (KGE). In addition to evaluating bias correction methods, the study identifies 

the best-performing CMIP6 models for annual and seasonal (March-May and June-September) periods, 

providing guidance on the most reliable simulations for capturing spatial and temporal precipitation 

variability across Sudan. This study is novel in its regional focus on Sudan and in systematically comparing 

quantile-based and scaling-based bias correction techniques. By integrating statistical performance metrics 

with spatial diagnostics, it enables a comprehensive evaluation of model performance, thus providing 

practical guidance for applying bias correction and selecting appropriate climate models for hydroclimatic 

studies across East Africa. 

3. Study area and data 

3.1. Study area 

This study focuses on Sudan, the third-largest country in Africa, located between approximately 8°–

23.5°N and 21°E–39°E. The country exhibits a pronounced climatic gradient, transitioning from hyper-

arid desert conditions in the north to semi-arid and savanna environments in the south (Fig. 1), with eleva-



tion decreasing from the highlands in the east and south to the northern plains. Correspondingly, precipi-

tation patterns are highly variable across the country, with northern regions receiving little rainfall and 

southern regions experiencing substantially higher totals, as shown by CHIRPS observations. 

Rainfall in Sudan is strongly seasonal, primarily driven by the north-south migration of the Intertropical 

Convergence Zone (ITCZ), with most precipitation occurring between June and September (Nicholson 

2018; RCCC 2022). This spatial and temporal variability has important implications for agriculture, water 

resources, and disaster risk management. Northern Sudan frequently faces prolonged droughts, while 

southern areas are more susceptible to intense rainfall events that can trigger seasonal flooding (RCCC 

2022). 

Sudan’s sensitivity to climate variability and change, combined with environmental and socio-economic 

pressures, makes it a valuable case study for evaluating climate models and assessing the effectiveness of 

bias correction techniques in reproducing historical precipitation patterns (Jackson et al. 2020). 

 

Fig. 1. Maps of Sudan with geographical coordinates. Panel (a) shows the shaded-relief elevation derived from the 

digital elevation model (DEM), and panel (b) shows the mean annual precipitation (mm/year) from CHIRPS, 

averaged over 1991-2014 at 0.25° spatial resolution. 

3.2. Data 

This study employs both observational and climate model datasets to evaluate bias correction techniques 

for monthly precipitation over Sudan. Observational data are sourced from the CHIRPS dataset, a high-

resolution gridded product that integrates satellite-derived precipitation estimates with in-situ rain gauge 

measurements (Funk et al. 2015). CHIRPS provides near-global coverage at 0.05° spatial resolution, 

making it particularly valuable in regions with sparse or unevenly distributed observational networks, such 

as Sudan (Nicholson 2018; ICPAC 2020). Its reliability has been demonstrated in multiple studies across 

East Africa, including evaluations of historical precipitation variability, seasonal rainfall patterns, and 

extreme events, establishing CHIRPS as a robust benchmark for climate model evaluation in the region 

(ICPAC 2020). 



For this analysis, monthly CHIRPS precipitation data from January 1991 to December 2014 were 

aggregated to a 0.25° resolution to match the climate model outputs. Precipitation values are expressed in 

mm month-¹, and the data were spatially clipped to Sudan’s national boundaries using a country-level 

shapefile. The combination of high spatial resolution, integration of ground-based observations, and 

demonstrated reliability makes CHIRPS a suitable reference for assessing CMIP6 precipitation simulations 

and the effectiveness of bias correction techniques over Sudan. Although CHIRPS is available through 

2020, the evaluation was restricted to 1991-2014 to align with the CMIP6 historical simulations. 

Table 1. CMIP6 models used in this study, with their institutions, countries, approximate horizontal resolution, sensi-

tivities and key reference. 

No. Model ID Institute/Country 
Resolution 

(°) 
Sensitivity Reference 

1 
AWI-CM-1-1-
MR 

Alfred Wegener Insti-
tute / Germany 

~1.0° 
Strong ocean–sea-ice coupling, af-
fecting moisture transport and tropi-
cal rainfall. 

Semmler et 
al. (2019) 

2 EC-Earth3 
EC-Earth Consortium 
/ Europe 

~1.0° 
Updated convection and aerosol–
cloud schemes, improving monsoon 
rainfall representation. 

Döscher et 
al. (2022) 

3 GFDL-ESM4 
NOAA Geophysical 
Fluid Dynamics Labor-
atory / USA 

~1.0° 
Improved cloud microphysics, radia-
tion, and land–atmosphere coupling 
shaping East African rainfall. 

Held et al. 
(2019) 

4 
HadGEM3-
GC31-LL 

Met Office Hadley 
Centre / UK 

~1.25° 
Complex convection and cloud 
schemes; high sensitivity in 
ITCZ/tropical rainfall. 

Williams et 
al. (2018) 

5 INM-CM4-8 
Institute for Numerical 
Mathematics / Russia 

~2.0° 
Simplified cloud and convection pro-
cesses leading to weaker precipitation 
feedback. 

Volodin et al. 
(2018) 

6 KACE-1-0-G 
Korea Meteorological 
Administration / South 
Korea 

~1.25° 
Updated KIM convection scheme 
enhancing tropical rainfall timing and 
intensity. 

Byun et al. 
(2019) 

7 MIROC6 
AORI / NIES / JAM-
STEC / Japan 

~1.4° 
Enhanced entrainment–detrainment 
convection, improving monsoon pre-
cipitation. 

Tatebe et al. 
(2019) 

8 MRI-ESM2-0 
Meteorological Re-
search Institute / Japan 

~1.1° 
Advanced cloud microphysics and 
precipitation formation, improving 
rainfall distribution. 

Yukimoto et 
al. (2019) 

9 NESM3 
Nanjing Univ. of Infor-
mation Science / China 

~1.0° 
Strong cloud feedback and updated 
boundary-layer scheme affecting 
monsoon variability. 

Cao et al. 
(2018) 

10 TaiESM1 
Research Center for 
Environmental 
Changes / Taiwan 

~1.0° 
Enhanced aerosol–cloud–convection 
interactions influencing spatial rain-
fall patterns. 

Lee et al. 
(2020) 

Climate data were obtained from ten carefully selected CMIP6 global climate models, chosen based on 

spatial resolution, data availability, and relevance to East Africa (Eyring et al. 2016). Model outputs were 

converted to mm month-¹, regridded to 0.25° spatial resolution, and clipped to Sudan’s national boundary 

to ensure consistency with CHIRPS observations (Gudmundsson et al. 2012). These ten models corre-

spond to a subset of 23 CMIP6 models previously evaluated over the IGAD region, including Sudan, and 

identified in the literature as demonstrating relatively high skill in reproducing precipitation totals, seasonal 

cycles, and extreme events (Ayugi et al. 2022). Their documented performance makes them particularly 

suitable for climate impact assessments and hydrological studies in the region. 



4. Methodology 

4.1. Bias correction methods 

To address systematic biases in CMIP6 precipitation outputs, four bias correction techniques were applied 

at a monthly time scale: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM), 

Local Intensity Scaling (LOCI), and the Delta Method. These methods span both parametric and non-par-

ametric approaches, capturing a broad methodological spectrum relevant to precipitation adjustment 

(Teutschbein, Seibert 2012). 

Empirical Quantile Mapping (EQM) 

EQM is a non-parametric bias correction approach that aligns the empirical cumulative distribution func-

tion (CDF) of the simulated precipitation with that of the observations (Maraun 2016). The corrected pre-

cipitation is computed as: 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐹𝑜𝑏𝑠,𝑒𝑚𝑝
−1 [𝐹𝑚𝑜𝑑,𝑒𝑚𝑝(𝑃𝑟𝑎𝑤)] (1) 

where 𝐹𝑚𝑜𝑑,𝑒𝑚𝑝 and 𝐹𝑜𝑏𝑠,𝑒𝑚𝑝
−1  represent the empirical CDF of the model and the inverse empirical CDF 

of the observations, respectively. 

Gamma Quantile Mapping (Gamma-QM) 

Gamma-QM is a parametric technique that assumes precipitation follows a gamma distribution. 

The distribution parameters are estimated via maximum likelihood for both model and observations. 

The correction is expressed as: 

𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐹𝑜𝑏𝑠,Γ
−1 [𝐹𝑚𝑜𝑑,Γ(𝑃𝑟𝑎𝑤)] (2) 

where 𝐹mod,Γ and 𝐹obs,Γ
−1  denote the gamma CDF of the modeled and observed precipitation, respectively. 

This method preserves the skewness typical of precipitation distributions (Li et al. 2010). 

Local Intensity Scaling (LOCI) 

LOCI preserves the occurrence of dry months while correcting precipitation intensity. For months where 

 𝑃𝑟𝑎𝑤  < 𝑇 (with 𝑇 =  1 mm/month in this study), precipitation remains zero; otherwise, it is scaled by:  

𝑃corrected = {
0,                          𝑃𝑟𝑎𝑤  < 𝑇
 𝑃𝑟𝑎𝑤  ×  𝐹,        𝑃𝑟𝑎𝑤 ≥ 𝑇

 (3) 

where the scaling factor is: 

𝐹 =
𝜇obs,>𝑇

𝜇mod,>𝑇
 (4) 



where 𝜇obs,>𝑇 and 𝜇mod,>𝑇 are the wet-month average precipitation values from observations and models, 

respectively (Schmidli et al. 2006). This approach preserves dry-month statistics, corrects systematic inten-

sity biases, and is particularly suitable for arid and semi-arid regions such as Sudan. 

Delta Method 

A straightforward bias adjustment method applying a monthly multiplicative correction: 

𝑃corrected = 𝑃raw ×
𝑃obs

𝑃mod
 (5) 

where 𝑃mod and 𝑃mod are the long-term monthly means from observations and the model, respectively. 

Only wet months (≥0.001 mm/month) are adjusted, thereby preserving the dry-season structure (Hay et 

al. 2000; Teutschbein, Seibert 2012). 

4.2. Performance evaluation metrics 

To quantify the effectiveness of the bias correction techniques, a set of complementary statistical measures 

was employed to compare simulated precipitation against the CHIRPS observational reference. The Pear-

son correlation coefficient (𝑟) evaluates the strength and direction of the linear association between mod-

eled and observed values. The Root Mean Square Error (RMSE) captures the overall magnitude of devia-

tions, reflecting the typical difference between simulations and observations. The Mean Bias (MB) indi-

cates the systematic tendency of models to overestimate or underestimate precipitation relative to observa-

tions. 

The Pearson correlation coefficient (𝑟) quantifies the strength and direction of the linear relationship be-

tween simulated (𝑥𝑖) and observed (𝑦𝑖) precipitation: 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 (6) 

where (𝑥̅) and (𝑦̅) are the mean values of the simulated and observed precipitation, respectively. This met-

ric evaluates the temporal agreement between simulations and observations. 

The Root Mean Square Error (𝑅𝑀𝑆𝐸) provides a measure of the average magnitude of deviations be-

tween simulations and observations, reflecting the overall accuracy of the model: 

RMSE = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1  (7) 

The Mean Bias (MB) indicates systematic overestimation or underestimation by the model: 

𝑀𝐵 =
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)𝑛

𝑖=1  (8) 



A key integrative metric, the Kling–Gupta Efficiency (KGE), synthesizes three critical aspects of a model: 

performance correlation, variability, and mean bias, into a single score. Using the revised formulation 

(Kling et al. 2012), the KGE is calculated as: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (α − 1)2 + (
σ𝑠𝑖𝑚/μ𝑠𝑖𝑚

σ𝑜𝑏𝑠/μ𝑜𝑏𝑠
− 1)

2

 (9) 

Here, 𝒓 represents the Pearson correlation coefficient, which quantifies the linear association between 

simulated and observed precipitation. The term 𝛂 =
𝛔sim

𝛔obs
 denotes the variability ratio, reflecting the relative 

spread of simulated precipitation compared to observations. The third component, expressed as 
𝛔sim/𝛍sim

𝛔obs/𝛍obs
, 

is the ratio of the coefficients of variation (CV) of simulated to observed precipitation, thereby 

incorporating the combined influence of variability and bias. This formulation ensures that deviations in 

correlation, variability, or normalized variability (via CV ratio) are equally weighted, providing a more 

balanced assessment of model performance. 

4.3. Uncertainty quantification and robustness assessment 

To assess the reliability of the performance metrics and the robustness of bias correction methods, a non-

parametric bootstrapping approach was implemented with 1,000 resampled datasets to estimate 95% 

confidence intervals, providing a rigorous evaluation of statistical uncertainty for each metric (Efron, 

Tibshirani 1993). In addition, sensitivity analyses were conducted to examine both seasonal (March-May 

and June-September) and spatial variability in method performance across Sudan (Saltelli et al. 2008). 

Statistical significance testing was applied to determine whether observed improvements in bias-corrected 

outputs relative to raw simulations were meaningful, ensuring that conclusions drawn are robust and 

defensible (Wilks 2011). 

5. Results 

5.1. Model evaluation 

The initial evaluation of raw CMIP6 precipitation simulations over Sudan was conducted through direct 

comparison with CHIRPS observational data for the period 1991-2014. Four complementary statistical 

metrics were computed to quantify model performance: Centered Root Mean Square Difference 

(CRMSD), mean bias, Pearson correlation coefficient (r), and Kling–Gupta Efficiency (Wilks 2011; Kling 

et al. 2012). CRMSD measures the magnitude of pattern errors after removing the mean bias, bias quanti-

fies systematic overestimation or underestimation, the correlation coefficient assesses the temporal agree-

ment between model and observations, and KGE integrates correlation, variability, and bias into a single 

skill metric. 

Substantial variability was observed among the ten CMIP6 models when expressed relative to the 

CHIRPS mean precipitation. Correlation coefficients ranged from 0.72 to 0.95, with EC-Earth3 (r = 0.95), 

NESM3 (r = 0.93), INM-CM4-8 (r = 0.92), KACE-1-0-G (r = 0.92), and MIROC6 (r = 0.92) exhibiting 



the strongest temporal agreement. Relative CRMSD values, expressed as a percentage of the CHIRPS 

mean, ranged between 10.87% (EC-Earth3) and 25.31% (MRI-ESM2-0), highlighting marked differences 

in the models’ ability to reproduce observed temporal variability. Mean bias analysis revealed that most 

models tended to underestimate rainfall, particularly AWI-CM-1-1-MR (–28.45%), HadGEM3-GC31-LL 

(–22.50%), and KACE-1-0-G (–16.15%), whereas GFDL-ESM4 (+5.24%) and INM-CM4-8 (+2.28%) 

slightly overestimated precipitation. KGE scores ranged from 0.58 (MRI-ESM2-0) to 0.89 (EC-Earth3), 

emphasizing pronounced inter-model differences in overall simulation skill. 

 

Fig. 2. CMIP6 model evaluation over Sudan (1991-2014). (a) Model Performance Heatmap: centered root-mean- 

square difference (CRMSD), mean bias magnitude, Pearson correlation coefficient (r), and Kling–Gupta Efficiency 

(KGE) for raw precipitation simulations. Metrics were rescaled to 011 to allow direct comparison; lighter colours 

indicate better relative performance. Original unscaled values are annotated within each cell. (b) CMIP6 Taylor 

Diagram: standard deviation, correlation coefficient, and CRMSD of each model relative to CHIRPS observations. 

Models closer to the reference point (CHIRPS) exhibit higher agreement in precipitation pattern and magnitude. EC-

Earth3 achieved the highest correlation and lowest CRMSD, whereas MRI-ESM2-0 displayed the lowest correlation 

and highest CRMSD among the evaluated models. 

These results are summarized in the heatmap presented in Figure 2a, which displays the four performance 

metrics for each model. To enable direct comparison across metrics with differing units and ranges, all 

values were rescaled to a standardized 0-1 scale, where lighter colours indicate better relative performance 

(i.e., lower CRMSD and bias magnitude, higher correlation and KGE), and darker colours denote poorer 

performance. Numeric annotations within each cell represent the original unscaled metric values. Comple-

menting the heatmap, Figure 2b shows a Taylor diagram (Taylor 2001) that simultaneously illustrates the 

standard deviation, CRMSD, and correlation of each model relative to CHIRPS. Models positioned closer 

to the reference point indicate superior agreement with observed precipitation patterns and magnitudes. 

EC-Earth3 achieved both the highest correlation and the lowest CRMSD, indicating strong fidelity in re-

producing observed variability. Conversely, MRI-ESM2-0 exhibited the weakest correlation and largest 

CRMSD, reflecting limited skill. Intermediate-performing models such as KACE-1-0-G, MIROC6, and 



INM-CM4-8 clustered near the reference point, displaying modest pattern errors but satisfactory correla-

tion strength. 

Together, the heatmap and Taylor diagram provide a comprehensive assessment of raw CMIP6 

precipitation performance over Sudan. The observed inter-model differences in magnitude, pattern, and 

combined skill metrics underscore the necessity for bias correction before employing these simulations for 

impact assessments or climate adaptation planning. 

5.2. Bias characteristics 

The raw CMIP6 ensemble precipitation over Sudan exhibits substantial annual, seasonal, and spatial biases 

relative to CHIRPS observations (Fig. 3). At the annual scale (ANN), the median bias is modestly positive 

at 7.14%, with a wide variability ranging from –82.20% to +100% (standard deviation: 48.01%). 

Overestimation dominates 60.4% of the country, primarily in the southern regions, while underestimation 

affects 39.6%, mainly across the northern and western arid zones. This indicates a spatially mixed bias 

pattern at the annual scale. 

 

Fig. 3. Seasonal precipitation over Sudan for the annual (ANN), pre-monsoon (March-May; MAM), and monsoon 

(June-September; JJAS) seasons during 1991-2014. Panels from left to right show CHIRPS observations, raw CMIP6 

ensemble mean precipitation, and the corresponding median bias (CMIP6 − CHIRPS) in percent (%). Hatching 

indicates areas where the bias is statistically significant (p < 0.05), determined using two-sample t-tests. 



5.3. Bias correction effectiveness 

The performance of four bias-correction techniques: Local Intensity Scaling (LOCI), Delta Change 

(Delta), Empirical Quantile Mapping (EQM), and Gamma Quantile Mapping (Gamma-QM) was assessed 

for ten CMIP6 precipitation models over Sudan during 1991-2014, using CHIRPS observations as the 

reference. Model fidelity was evaluated through Pearson correlation (r), Kling–Gupta Efficiency (KGE), 

and the centered root-mean-square difference (CRMSD). Figure 4 summarizes inter-model performance 

across methods. Both EQM and Gamma-QM deliver the strongest and most consistent improvements. 

Mean correlation (mean ± standard deviation across models) increases from 0.91 ± 0.01 in the raw 

ensemble to 0.98 ± 0.01 after EQM and 0.98 ± 0.01 after Gamma-QM. Correspondingly, mean CRMSD 

decreases from 17.7 ± 6.5 mm in the raw simulations to 7.7 ± 0.4 mm (EQM) and 7.9 ± 0.5 mm 

(Gamma-QM). The average KGE rises sharply from 0.72 ± 0.22 in the uncorrected models to 0.98 ± 0.01 

following both quantile-based corrections, indicating a near-complete recovery of observed precipitation 

variability and bias structure. LOCI yields moderate but robust gains, increasing mean correlation to 0.96 

± 0.01 and KGE to 0.94 ± 0.03, while reducing CRMSD to 9.6 ± 1.1 mm. In contrast, the Delta method 

exhibits greater inter-model variability, with mean correlation 0.93 ± 0.06, mean KGE 0.91 ± 0.07, and 

CRMSD 12.7 ± 4.6 mm. Although Delta performs comparably to LOCI for several models, its linear 

scaling approach fails to capture nonlinear precipitation biases fully, resulting in less uniform 

improvements. 

 

Fig. 4. Heatmaps illustrating Pearson correlation coefficient, Centered Root Mean Square Difference (CRMSD), and 

Kling–Gupta Efficiency (KGE) for ten CMIP6 climate models before and after bias correction by LOCI, Delta, 

EQM, and Gamma methods. Results are benchmarked against CHIRPS observations over Sudan (annual mean, 

1991-2014). Superior performance is indicated by higher correlation and KGE, and lower CRMSD values, with EQM 

and Gamma methods showing consistently better skill. 

Overall, these results demonstrate that quantile-based bias-correction approaches (EQM and Gamma-

QM) are the most effective for CMIP6 precipitation simulations over Sudan. They minimize amplitude 

errors, enhance temporal coherence with CHIRPS observations, and substantially improve both statistical 



reliability and physical realism. Such corrections are therefore essential for downstream hydrological and 

climate-impact analyses in the region. 

5.4. Uncertainty assessment via bootstrapping 

The robustness of each bias-correction method was evaluated using non-parametric bootstrapping with 

1,000 replicates across three seasonal periods: annual, pre-monsoon, and monsoon. Four evaluation met-

rics were considered: bias, root mean square error (RMSE), Pearson correlation coefficient (r), and Kling–

Gupta efficiency (KGE). The corresponding bootstrapped medians with 95% confidence intervals (CIs) 

are summarized in Table 2. 

Table 2. Bootstrapped (median ±95% CI) evaluation of CMIP6 precipitation over Sudan for Raw and bias-corrected 

methods (Delta, EQM, Gamma-QM, LOCI) across ANN, MAM, and JJAS periods. Metrics shown include Kling–

Gupta Efficiency (KGE), RMSE, Bias, and ΔBias (%), which represents the percentage reduction in absolute bias rel-

ative to the Raw simulation. 

Method Period KGE RMSE Bias ΔBias (%) 

Raw ANN 0.78 (0.00–0.93) 14.17 (11.79–39.55) −0.48 (−7.54–18.91) 0 

Delta ANN 0.98 (0.81–0.99) 2.19 (1.27–19.36) 0.11 (−3.62–1.05) 77 

EQM ANN 1.00 (0.99–1.00) 0.11 (0.04–0.64) −0.03 (−0.34–−0.01) 94 

Gamma ANN 1.00 (0.99–1.00) 0.13 (0.02–1.33) 0.03 (−0.02–0.41) 94 

LOCI ANN 0.98 (0.92–1.00) 1.65 (0.87–3.83) −0.54 (−2.70–0.19) −13 

Raw MAM 0.41 (0.00–0.83) 16.52 (11.13–42.07) 5.18 (−9.40–23.90) 0 

Delta MAM 0.99 (0.72–1.00) 0.78 (0.08–15.14) −0.14 (−3.24–−0.01) 97 

EQM MAM 1.00 (0.96–1.00) 0.05 (0.01–1.55) −0.02 (−0.74–−0.01) 100 

Gamma MAM 1.00 (0.99–1.00) 0.09 (0.03–0.73) 0.02 (−0.07–0.13) 100 

LOCI MAM 0.95 (0.76–0.99) 2.03 (1.33–7.12) −0.03 (−4.50–1.10) 99 

Raw JJAS 0.81 (0.19–0.90) 37.21 (27.57–75.34) −8.33 (−22.85–35.53) 0 

Delta JJAS 0.99 (0.84–1.00) 1.82 (0.08–39.68) −0.52 (−7.99–−0.02) 94 

EQM JJAS 1.00 (1.00–1.00) 0.31 (0.01–0.89) −0.07 (−0.35–0.00) 99 

Gamma JJAS 1.00 (1.00–1.00) 0.13 (0.03–0.40) 0.00 (−0.06–0.16) 100 

LOCI JJAS 0.97 (0.95–1.00) 3.98 (0.93–5.95) −1.68 (−3.26–0.24) 80 

The bootstrapped results indicate that quantile-based methods (EQM and Gamma-QM) consistently 

achieve the highest reduction in absolute bias (ΔBias %) across all seasons. For the annual period, EQM 

achieved the largest improvement with ΔBias = 94%, closely followed by Gamma-QM (ΔBias = 94%). 

During the pre-monsoon season, both EQM and Gamma-QM fully corrected the mean bias 

(ΔBias = 100%), reflecting near-perfect alignment with CHIRPS observations. In the monsoon period, 

Gamma-QM slightly outperformed EQM (ΔBias = 100% vs. 99%), demonstrating robust performance 

during the main rainy season. 

Other methods, such as LOCI and Delta, generally improved model performance but were less consistent. 

Notably, LOCI slightly increased the absolute bias in the annual period (ΔBias = –13%). Overall, these 

findings highlight the superiority of EQM and Gamma-QM for correcting precipitation biases in regions 

with complex seasonal variability, such as Sudan, while simultaneously improving KGE, RMSE, and bias 

relative to the raw CMIP6 simulations. 



5.5. Annual and seasonal evaluation 

Figure 5 presents the spatial distribution of seasonal precipitation biases for the ensemble raw and EQM-

corrected CMIP6 simulations over Sudan, including maps of bias differences and the statistical 

significance of the corrections. The raw simulations reveal a mean annual bias close to zero, with a median 

of 2.16% and substantial spatial heterogeneity (standard deviation: 69.69%). During March-May, biases are 

dominated by overestimation, with a median of 8.86% and standard deviation of 23.64%, while the June-

September period exhibits underestimation, with a median of –6.31% and a standard deviation of 65.22%. 

Following EQM bias correction, median biases across all seasons are effectively reduced nearly to zero 

(March-May: –0.21%, June-September: –0.15%, annual: –0.71%), and the spread of residual biases is 

substantially narrowed (EQM standard deviations: annual 1.01%, March-May 0.43%, June-September 

0.71%). The ΔBias (%), representing the relative improvement after EQM correction, shows a median 

reduction of 96.18% for the annual period, 98.42% for March-May, and 98.75% for June-September, 

indicating a marked enhancement in model-observation agreement. 

 

Fig. 5. Spatial distribution of annual and seasonal precipitation biases over Sudan (1991-2014) for the ensemble raw 

CMIP6 simulations and EQM bias-corrected outputs. Columns represent (from left to right) the raw bias, EQM-

corrected bias, and the percentage reduction in bias (ΔBias %) following EQM correction. Units are mm/year for 

the annual (ANN) row and mm/season for seasonal rows (MAM: March–May, JJAS: June–September). Grey shad-

ing in MAM highlights arid northern and central regions with observed precipitation below 10 mm/season, excluded 

from the ΔBias calculation. Hatching indicates areas where bias reduction is statistically significant (p < 0.05).  



The observed seasonal biases likely arise from a combination of factors inherent to global climate models, 

including limitations in convective parameterizations, representation of orographic effects, and model res-

olution constraints, all of which influence the simulation of precipitation intensity and spatial distribution. 

The pronounced overestimation during the pre-monsoon season may reflect difficulties in simulating the 

onset of the rainy season, whereas the underestimation during the monsoon season could be related to 

deficiencies in representing the full intensity and extent of monsoonal rainfall. 

While the EQM bias correction method substantially mitigates these systematic biases, it is important to 

note that bias correction techniques primarily adjust the statistical properties of model outputs and do not 

address the underlying model physics. Consequently, residual biases and uncertainties may persist, espe-

cially under future climate conditions or outside the calibration period. Moreover, the spatial patterns of 

bias correction effectiveness vary, emphasizing the need for continued model development alongside the 

application of bias correction approaches. 

5.6. Evaluation of model performance 

The performance of ten CMIP6 models in reproducing observed precipitation climatology over Sudan 

was evaluated for annual and seasonal periods. Empirical Quantile Mapping (EQM) was applied to assess 

its influence on model fidelity. Model skill was quantified using correlation, centered root-mean-square 

difference expressed as a percentage of observed mean precipitation (CRMSD%) and normalized standard 

deviation relative to CHIRPS. Both raw and EQM-corrected simulations were analyzed to determine the 

magnitude of improvement following bias correction. 

At the annual scale, EQM substantially reduces model errors, with CRMSD decreases ranging from 35% 

to 48% compared to the raw simulations (Fig. 6a). EC-Earth3, GFDL-ESM4, and INM-CM4-8 exhibit 

the strongest improvements, achieving correlations of 0.97 and CRMSD values below 10% of the 

observed annual mean, indicating a highly realistic representation of spatial rainfall variability. 

During the pre-monsoon season, model performance shows greater variability (Fig. 6b). EQM reduces 

CRMSD for all models, with the best-performing models (NESM3, EC-Earth3, and GFDL-ESM4) 

achieving CRMSD levels of 12-18% of observed seasonal precipitation and correlations between 0.81 and 

0.91. These results highlight the effectiveness of EQM in correcting models that initially underestimated 

early-season rainfall. 

For the main monsoon season, EQM correction again improves simulation fidelity (Fig. 6c). EC-Earth3, 

GFDL-ESM4, and INM-CM4-8 continue to rank highest, with correlations of 0.87-0.88 and CRMSD 

values of 15-20% relative to CHIRPS. Although correlations are slightly lower than at the annual scale, 

these models consistently capture the spatial distribution of monsoon rainfall. 

Overall, converting the evaluation to a percentage-based framework demonstrates that EQM significantly 

enhances CMIP6 precipitation simulations by reducing systematic biases and improving spatial pattern 

agreement across Sudan’s diverse climatic zones. 



 

Fig. 6. Taylor diagrams for ten CMIP6 models before and after EQM bias correction during (a) annual, (b) March-

May, (c) June-September. Each diagram compares model performance with CHIRPS precipitation over Sudan in 

terms of correlation (radial distance), CRMSD (curved distance from the reference point), and standard deviation 

(distance from the origin). Star markers denote CHIRPS; circles represent raw models; triangles represent EQM-

corrected models. 

Overall, the Taylor diagram analysis (Fig. 6) demonstrates that EQM bias correction substantially 

improves the statistical agreement of CMIP6 ensemble simulations with observations across all seasons. 

EC-Earth3, GFDL-ESM4, and INM-CM4-8 are consistently the top performers annually and during the 

monsoon season, while NESM3 excels during the pre-monsoon season. These results highlight both the 

effectiveness of statistical bias correction and the relative strengths of individual models in capturing 

seasonal precipitation dynamics over Sudan. 

6. Discussion 

The evaluation of CMIP6 precipitation simulations over Sudan reveals substantial variability in model skill, 

highlighting the challenges of representing rainfall in arid and semi-arid climates. Raw model outputs ex-

hibit systematic biases, often overestimating rainfall during the pre-monsoon season and underestimating 

it during the main monsoon (Ayugi et al. 2022; Omay et al. 2023). Although annual biases appear smaller 

on average, they conceal significant spatial heterogeneity, reflecting compensating errors across northern, 

central, and southern Sudan. These discrepancies indicate that even the latest CMIP6 models struggle to 

capture convective rainfall initiation, monsoon propagation, and regional orographic influences: issues that 

have been documented in other CMIP6 evaluation studies (Vogel et al. 2018; Toolan et al. 2025). 

Application of bias correction methods markedly improves simulation fidelity, although effectiveness var-

ies by technique and season. Quantile-based approaches consistently produce the largest reductions in bias 

while improving temporal correlation and overall model performance (Ayugi et al. 2022; Tiku et al. 2025). 

These methods effectively mitigate seasonal biases during MAM and JJAS, reducing annual biases substan-

tially. In contrast, simpler methods with linear or intensity-scaling assumptions achieve only moderate im-

provements and fail to capture the nonlinearity of precipitation distributions during early-season rainfall 

(Switanek et al. 2017). These findings underscore the importance of advanced, distribution-focused bias 

correction in regions with highly seasonal and spatially variable rainfall. 



Spatially explicit analyses further demonstrate that bias correction reduces not only the magnitude of er-

rors but also improves the representation of precipitation variability in regions critical for water resources 

and agriculture. By excluding arid northern areas with negligible precipitation (<40% of the seasonal 

mean), and focusing on statistically significant improvements, this study ensures that methodological en-

hancements are both hydrologically meaningful and regionally robust. Such a spatially refined evaluation 

represents an advancement over prior studies, which often assess only mean biases without accounting for 

spatial heterogeneity or significance (Ayugi et al. 2022; Omay et al. 2023). 

Finally, integrating bias reduction with rigorous model evaluation helps identify both the most reliable 

models and the most effective correction methods. This framework demonstrates that even after statistical 

correction, intrinsic model characteristics continue to influence seasonal performance. By combining bias 

correction with model skill assessment, this study provides a robust approach for improving precipitation 

simulations over Sudan and other regions with complex rainfall patterns (Tiku et al. 2025). 

7. Conclusions 

This study evaluated the performance of multiple bias correction techniques – LOCI, Delta, EQM, and 

Gamma-QM – in improving CMIP6 precipitation simulations over Sudan for 1991-2014, using CHIRPS 

observations as the reference. Raw CMIP6 models exhibited systematic spatial biases, primarily linked to 

misrepresentation of the Intertropical Convergence Zone (ITCZ) and limitations in convective 

parameterizations. 

Among the tested methods, quantile-based approaches (EQM and Gamma-QM) consistently achieved the 

largest improvements across statistical metrics (correlation, CRMSD, bias, and KGE), reducing mean bias 

by up to 90 % and enhancing temporal agreement with observations. LOCI and Delta methods provided 

moderate improvements, largely correcting mean precipitation, but were less effective in capturing 

distributional variability. Bias correction effectiveness varied seasonally and spatially, performing best in 

humid southern regions and during the monsoon season, while residual uncertainties persisted in arid 

northern areas due to low rainfall and observational limitations. 

By integrating multi-metric evaluation, robust bootstrapping, and spatially explicit significance testing, this 

study demonstrates that advanced, distribution-focused bias correction substantially enhances model 

fidelity, reproducing realistic spatial and temporal variability across annual and seasonal timescales. These 

findings provide clear guidance for selecting reliable models and appropriate correction techniques in 

climate impact assessments and water-resource planning. 

Future work should extend these approaches to daily-scale analyses, incorporate multi-reference datasets, 

and explore dynamical downscaling or hybrid correction frameworks to further improve model realism 

under changing climate conditions, and to assess the persistence of correction effectiveness under non-

stationary climates. 
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