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Abstract

This study evaluates the performance of several bias correction techniques applied to CMIPG6 precipitation simulations over Sudan
for the period 1991-2014, using the high-resolution CHIRPS observational dataset as a reference. Four widely used bias
correction methods: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM), Local Intensity Scaling
(LOCI), and the Delta Method were applied to ten CMIP6 models to assess their ability to reduce systematic biases and improve
consistency with observed climatology. The raw simulations reveal pronounced seasonal biases, charactetized by overestimation
during the pre-monsoon season (MAM) and underestimation during the monsoon season (JJAS), whereas annual biases are
moderate but exhibit notable spatial heterogeneity. Among the tested techniques, EQM and Gamma-QM consistently yield the
most effective cotrections, achieving median bias reductions of 94-100% across both annual and seasonal timescales, and
markedly enhancing Kling—Gupta Efficiency (KGE) values. Among the evaluated models, EC-Earth3, GFDL-ESM4, and INM-
CM4-8 demonstrate the best performance annually and during June-September, whereas NESM3 performs better during March-
May, highlighting model-specific strengths in simulating seasonal precipitation variability. Spatial analyses further confirm that bias
corrections effectively align precipitation variability with observations, with statistically significant improvements across most
regions of Sudan. These findings highlight the critical role of quantile-based correction methods in producing reliable CMIP6
precipitation outputs over Sudan and establish a robust framework for assessing both model skill and bias correction performance

in regions characterized by complex, seasonally varying rainfall regimes.
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1. Background and motivation

Precipitation is a fundamental component of the hydrological cycle, supporting agricultural productivity,
water resource management, and ecosystem sustainability. Sudan exhibits pronounced climatic variability,
ranging from hyper-arid desert conditions in the north to semi-humid savannahs in the south. Under-
standing precipitation patterns and variability is therefore essential for mitigating drought impacts, ensuz-
ing food security, and developing effective climate adaptation strategies in this highly climate-sensitive re-
gion. However, the spatse and uneven distribution of ground-based meteorological stations across Sudan
limits the accurate reconstruction of historical precipitation records and constrains the assessment of cli-

mate-related risks (Funk et al. 2015).

Global Climate Models (GCMs), including those developed under the Coupled Model Intercomparison
Project Phase 6 (CMIPG6), provide valuable insights into past and future climate conditions. Nonetheless,

these models often exhibit systematic biases when simulating regional precipitation, particularly in arid and



semi-arid regions (Eyring et al. 2016). Such biases can significantly affect the reliability of model-based
precipitation estimates and increase uncertainties in hydrological modeling and climate impact assess-
ments. To overcome these limitations, bias correction techniques are widely applied to statistically adjust

GCM outputs, aligning them more closely with observed data (Gudmundsson et al. 2012; Maraun 2013).

Despite the growing use of bias correction methods, comprehensive evaluations focusing specifically on
Sudan remain scarce (Gebrechorkos et al. 2019). The country’s steep climatic gradients and high spatial
and temporal rainfall variability pose unique challenges for model calibration and correction. While studies
across Hast Africa have shown that bias adjustment improves model performance, systematic assessments
for Sudan, where observational networks are particularly limited, are still lacking. This gap highlights the
need for detailed regional analyses to identify the most effective bias correction techniques for improving

precipitation simulations and supporting climate resilience planning (Siddig et al. 2022).

2. Objectives and scope

Bias cotrection techniques enhance the reliability of climate model outputs by reducing systematic errors
and improving alignment with observed climatology. Such adjustments are especially important for
General Circulation Model (GCM) analyses, where uncorrected biases can substantially limit the
usefulness of model projections. This study evaluates the performance of four widely used bias correction
methods: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM), Local Intensity
Scaling (LOCI), and the Delta Method. These methods were applied to monthly precipitation simulations
from ten CMIP6 models over Sudan during the 1991-2014 historical period. The Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) is the observational benchmark for assessing each
method’s effectiveness. Model performance is quantified using multiple complementary statistical mettics,
including the Pearson correlation coefficient, centered root-mean-squate deviation (CRMSD), mean bias,
and Kling—Gupta Efficiency (KGE). In addition to evaluating bias correction methods, the study identifies
the best-performing CMIP6 models for annual and seasonal (March-May and June-September) periods,
providing guidance on the most reliable simulations for capturing spatial and temporal precipitation
variability across Sudan. This study is novel in its regional focus on Sudan and in systematically comparing
quantile-based and scaling-based bias correction techniques. By integrating statistical performance metrics
with spatial diagnostics, it enables a comprehensive evaluation of model performance, thus providing
practical guidance for applying bias correction and selecting appropriate climate models for hydroclimatic

studies across East Africa.

3. Study area and data

3.1. Study area

This study focuses on Sudan, the third-largest country in Africa, located between approximately 8°—
23.5°N and 21°E-39°E. The country exhibits a pronounced climatic gradient, transitioning from hyper-

arid desert conditions in the north to semi-arid and savanna environments in the south (Fig. 1), with eleva-



tion decreasing from the highlands in the east and south to the northern plains. Correspondingly, precipi-
tation patterns are highly variable across the country, with northern regions receiving little rainfall and

southern regions experiencing substantially higher totals, as shown by CHIRPS observations.

Rainfall in Sudan is strongly seasonal, primarily driven by the north-south migration of the Intertropical
Convergence Zone (ITCZ), with most precipitation occurring between June and September (Nicholson
2018; RCCC 2022). This spatial and temporal variability has important implications for agriculture, water
resources, and disaster risk management. Northern Sudan frequently faces prolonged droughts, while

southern areas are more susceptible to intense rainfall events that can trigger seasonal flooding (RCCC

2022).

Sudan’s sensitivity to climate variability and change, combined with environmental and socio-economic
pressures, makes it a valuable case study for evaluating climate models and assessing the effectiveness of

bias correction techniques in reproducing historical precipitation patterns (Jackson et al. 2020).
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Fig. 1. Maps of Sudan with geographical coordinates. Panel (a) shows the shaded-relief elevation derived from the
digital elevation model (DEM), and panel (b) shows the mean annual precipitation (mm/year) from CHIRPS,

averaged over 1991-2014 at 0.25° spatial resolution.

3.2. Data

This study employs both observational and climate model datasets to evaluate bias correction techniques
for monthly precipitation over Sudan. Observational data are sourced from the CHIRPS dataset, a high-
resolution gridded product that integrates satellite-derived precipitation estimates with in-situ rain gauge
measurements (Funk et al. 2015). CHIRPS provides near-global coverage at 0.05° spatial resolution,
making it particularly valuable in regions with sparse or unevenly distributed observational networks, such
as Sudan (Nicholson 2018; ICPAC 2020). Its reliability has been demonstrated in multiple studies across
East Africa, including evaluations of historical precipitation variability, seasonal rainfall patterns, and
extreme events, establishing CHIRPS as a robust benchmark for climate model evaluation in the region

(ICPAC 2020).



For this analysis, monthly CHIRPS precipitation data from January 1991 to December 2014 were
aggregated to a 0.25° resolution to match the climate model outputs. Precipitation values are expressed in
mm month', and the data were spatially clipped to Sudan’s national boundaries using a country-level
shapefile. The combination of high spatial resolution, integration of ground-based observations, and
demonstrated reliability makes CHIRPS a suitable reference for assessing CMIP6 precipitation simulations
and the effectiveness of bias correction techniques over Sudan. Although CHIRPS is available through
2020, the evaluation was restricted to 1991-2014 to align with the CMIPG6 historical simulations.

Table 1. CMIP6 models used in this study, with their institutions, countries, approximate horizontal resolution, sensi-

tivities and key reference.

No. Model ID Institute/Country ReS(zil)mon Sensitivity Reference
AWI-CM-1-1- Alfred Wegener Insti- ° Strqng ocean—sca-icee coupling, af- . Semmler et
1 © ~1.0 fecting moisture transport and tropi-
MR tute / Germany ; al. (2019)
cal rainfall.
EC-Earth Consortium o Updated convecton anfi acrosol- Déscher et
2 EC-Earth3 ~1.0 cloud schemes, improving monsoon
/ Europe . : al. (2022)
rainfall representation.
NOAA Geophysical Improved cloud microphysics, radia- Held et al
3 GFDL-ESM4 Fluid Dynamics Labor- ~1.0° tion, and land—atmosphere coupling (2019 '
atory / USA shaping East African rainfall. )
g4 | HadGEM3- Met Office Hadley ~1.25° Sccl)lr:rlrjllee: ﬁ?giviﬁﬁiﬁﬁgiﬁbud Williams et
GC31-LL Centre / UK ITCZ/tropical rainfal. al. (2018)
. . Simplified cloud and convection pro- .
5 INM-CM4-8 Institute fgr Numer{cal ~2.0° cesses leading to weaker precipitation Volodin et al.
Mathematics / Russia (2018)
feedback.
Korea Meteorological Updated KIM convection scheme Buun et al
6 KACE-1-0-G Administration / South ~1.25° enhancing tropical rainfall timing and ZyOul9 '
Korea intensity. ( )
2 | ammoce | ACRU/NIES/JaM- || momoonpre. | Tacbe cal
STEC / Japan : onveeton, Improving p (2019)
cipitation.
Meteorological Re- o Advgqced cloud mlgrophyslcs apd Yukimoto et
8 MRI-ESM2-0 : ~1.1 precipitation formation, improving
search Institute / Japan . o al. (2019)
rainfall distribution.
Nanjing Univ. of Infor- i Strong cloud feedback and updated Cao et al.
9 NESM3 . . . ~1.0 boundary-layer scheme affecting
mation Science / China ST (2018)
monsoon variability.
Research Center for Enhanced aerosol—cloud—convection Lee et al
10 TaiESM1 Environmental ~1.0° interactions influencing spatial rain- '
. (2020)
Changes / Taiwan fall patterns.

Climate data were obtained from ten carefully selected CMIP6 global climate models, chosen based on

spatial resolution, data availability, and relevance to East Africa (Eyring et al. 2016). Model outputs were

converted to mm month-, regridded to 0.25° spatial resolution, and clipped to Sudan’s national boundary

to ensure consistency with CHIRPS observations (Gudmundsson et al. 2012). These ten models corre-

spond to a subset of 23 CMIP6 models previously evaluated over the IGAD region, including Sudan, and

identified in the literature as demonstrating relatively high skill in reproducing precipitation totals, seasonal

cycles, and extreme events (Ayugi et al. 2022). Their documented performance makes them particularly

suitable for climate impact assessments and hydrological studies in the region.




4. Methodology

4.1. Bias correction methods

To address systematic biases in CMIP6 precipitation outputs, four bias correction techniques were applied
at a monthly time scale: Empirical Quantile Mapping (EQM), Gamma Quantile Mapping (Gamma-QM),
Local Intensity Scaling (LOCI), and the Delta Method. These methods span both parametric and non-par-

ametric approaches, capturing a broad methodological spectrum relevant to precipitation adjustment

(Teutschbein, Seibert 2012).

Empirical Quantile Mapping (EQM)
EQM is a non-parametric bias correction approach that aligns the empirical cumulative distribution func-
tion (CDF) of the simulated precipitation with that of the observations (Maraun 2016). The corrected pre-

cipitation is computed as:

Pcorrected = Fo_b%s,emp [Fmod,emp (Praw)] (1>
where Finoqemp and Fo_b%gremp represent the empirical CDF of the model and the inverse empirical CDF

of the observations, respectively.

Gamma Quantile Mapping (Gamma-QM)
Gamma-QM is a parametric technique that assumes precipitation follows a gamma distribution.
The distribution parameters are estimated via maximum likelihood for both model and observations.

The correction is expressed as:

Peorrectea = Fo_bls,l" [Fmod,F(Praw)] 2

where Fyoqr and Fo_bi,l" denote the gamma CDF of the modeled and observed precipitation, respectively.

This method preserves the skewness typical of precipitation distributions (Li et al. 2010).

Local Intensity Scaling (LOCI)

LOCI preserves the occurrence of dry months while correcting precipitation intensity. For months where

Pragw <T (withT = 1 mm/month in this study), precipitation remains zeto; otherwise, it is scaled by:
(S Pogw <T
P, corrected — { Praw X F, Praw >T (3>

where the scaling factor is:

F = Hobs>T (4>

Hmod,>T



where Ugps > and Upog > are the wet-month average precipitation values from observations and models,
respectively (Schmidli et al. 20006). This approach preserves dry-month statistics, corrects systematic inten-

sity biases, and is particularly suitable for arid and semi-arid regions such as Sudan.

Delta Method

A straightforward bias adjustment method applying a monthly multiplicative correction:

_ ﬁobs

Peorrected = Praw X P ®)
mod

where Poq and Ppoq are the long-term monthly means from observations and the model, respectively.

Only wet months (=0.001 mm/month) are adjusted, thereby preserving the dry-season structure (Hay et

al. 2000; Teutschbein, Seibert 2012).

4.2. Performance evaluation metrics
To quantify the effectiveness of the bias correction techniques, a set of complementary statistical measures

was employed to compare simulated precipitation against the CHIRPS observational reference. The Pear-
son correlation coefficient (1) evaluates the strength and direction of the linear association between mod-
eled and observed values. The Root Mean Squate Error (RMSE) captures the overall magnitude of devia-

tions, reflecting the typical difference between simulations and observations. The Mean Bias (MB) indi-
cates the systematic tendency of models to overestimate or underestimate precipitation relative to observa-

tions.

The Pearson correlation coefficient (1) quantifies the strength and direction of the linear relationship be-

tween simulated (x;) and observed (y;) precipitation:

_ G- (yi—5)
r =
JzyZl(xi—f)z JZ?:1<yi—y)2

©)

where (X) and () ate the mean values of the simulated and obsetved precipitation, respectively. This met-

ric evaluates the temporal agreement between simulations and observations.

The Root Mean Square Error (RMSE) provides a measure of the average magnitude of deviations be-

tween simulations and observations, reflecting the overall accuracy of the model:

1
RMSE = |25, G — 30 )
The Mean Bias (MB) indicates systematic overestimation or underestimation by the model:

MB =1

n

X g —yi) @®



A key integrative metric, the Kling—Gupta Efficiency (KGE), synthesizes three critical aspects of a model:
performance correlation, variability, and mean bias, into a single score. Using the revised formulation

(Kling et al. 2012), the KGE'is calculated as:

Oobs/Hobs

1<GE=1—\/(r—1)2+(a—1)2+(M—1)2 )

Here, 1 represents the Pearson correlation coefficient, which quantifies the linear association between

Osim

simulated and observed precipitation. The term a = denotes the variability ratio, reflecting the relative

Oobs
Gsim/ Hsim

spread of simulated precipitation compared to observations. The third component, expressed as oo/ o
obs/ Fobs

is the ratio of the coefficients of vatiation (CVj of simulated to obsetrved precipitation, thereby
incorporating the combined influence of variability and bias. This formulation ensures that deviations in
correlation, variability, or normalized variability (via CVratio) are equally weighted, providing a more

balanced assessment of model performance.

4.3. Uncertainty quantification and robustness assessment

To assess the reliability of the performance metrics and the robustness of bias correction methods, a non-
parametric bootstrapping approach was implemented with 1,000 resampled datasets to estimate 95%
confidence intervals, providing a rigorous evaluation of statistical uncertainty for each metric (Efron,
Tibshirani 1993). In addition, sensitivity analyses were conducted to examine both seasonal (March-May
and June-September) and spatial variability in method performance across Sudan (Saltelli et al. 2008).
Statistical significance testing was applied to determine whether observed improvements in bias-corrected

outputs relative to raw simulations were meaningful, ensuring that conclusions drawn are robust and

defensible (Wilks 2011).

5. Results

5.1. Model evaluation

The initial evaluation of raw CMIPG6 precipitation simulations over Sudan was conducted through direct
comparison with CHIRPS observational data for the period 1991-2014. Four complementary statistical
metrics were computed to quantify model performance: Centered Root Mean Square Difference
(CRMSD), mean bias, Pearson correlation coefficient (1), and Kling—Gupta Efficiency (Wilks 2011; Kling
et al. 2012). CRMSD measures the magnitude of pattern errors after removing the mean bias, bias quanti-
fies systematic overestimation or underestimation, the correlation coefficient assesses the temporal agree-
ment between model and observations, and KGE integrates correlation, variability, and bias into a single

skill metric.

Substantial variability was observed among the ten CMIP6 models when expressed relative to the
CHIRPS mean precipitation. Correlation coefficients ranged from 0.72 to 0.95, with EC-Earth3 (r = 0.95),
NESM3 (r = 0.93), INM-CM4-8 (r = 0.92), KACE-1-0-G (¢ = 0.92), and MIROCGO6 (r = 0.92) exhibiting



the strongest temporal agreement. Relative CRMSD values, expressed as a percentage of the CHIRPS
mean, ranged between 10.87% (EC-Earth3) and 25.31% (MRI-ESM2-0), highlighting marked differences
in the models’ ability to reproduce observed temporal variability. Mean bias analysis revealed that most
models tended to underestimate rainfall, particularly AWI-CM-1-1-MR (-28.45%), HadGEM3-GC31-LL
(—22.50%), and KACE-1-0-G (-16.15%), whereas GFDL-ESM4 (+5.24%) and INM-CM4-8 (+2.28%)
slightly overestimated precipitation. KGE scores ranged from 0.58 (MRI-ESM2-0) to 0.89 (EC-Earth3),

emphasizing pronounced inter-model differences in overall simulation skill.
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Fig. 2. CMIP6 model evaluation over Sudan (1991-2014). (a) Model Performance Heatmap: centered root-mean-
square difference (CRMSD), mean bias magnitude, Pearson correlation coefficient (r), and Kling—Gupta Efficiency
(KGE) for raw precipitation simulations. Metrics were rescaled to 011 to allow direct compatison; lighter colours
indicate better relative performance. Original unscaled values are annotated within each cell. (b) CMIP6 Taylor
Diagram: standard deviation, correlation coefficient, and CRMSD of each model relative to CHIRPS observations.
Models closer to the reference point (CHIRPS) exhibit higher agreement in precipitation pattern and magnitude. EC-
Earth3 achieved the highest correlation and lowest CRMSD, whereas MRI-ESM2-0 displayed the lowest correlation
and highest CRMSD among the evaluated models.

These results are summarized in the heatmap presented in Figure 2a, which displays the four performance
metrics for each model. To enable direct comparison across metrics with differing units and ranges, all
values were rescaled to a standardized 0-1 scale, where lighter colours indicate better relative performance
(i.e., lower CRMSD and bias magnitude, higher correlation and KGE), and darker colours denote poorer
performance. Numeric annotations within each cell represent the original unscaled metric values. Comple-
menting the heatmap, Figure 2b shows a Taylor diagram (Taylor 2001) that simultaneously illustrates the
standard deviation, CRMSD, and correlation of each model relative to CHIRPS. Models positioned closer
to the reference point indicate superior agreement with observed precipitation patterns and magnitudes.
EC-Earth3 achieved both the highest correlation and the lowest CRMSD, indicating strong fidelity in re-
producing observed variability. Conversely, MRI-ESM2-0 exhibited the weakest correlation and largest
CRMSD, reflecting limited skill. Intermediate-performing models such as KACE-1-0-G, MIROCO, and



INM-CM4-8 clustered near the reference point, displaying modest pattern errors but satisfactory correla-

tion strength.

Together, the heatmap and Taylor diagram provide a comprehensive assessment of raw CMIP6
precipitation performance over Sudan. The observed inter-model differences in magnitude, pattern, and
combined skill metrics underscore the necessity for bias correction before employing these simulations for

impact assessments or climate adaptation planning.

5.2. Bias characteristics

The raw CMIP6 ensemble precipitation over Sudan exhibits substantial annual, seasonal, and spatial biases
relative to CHIRPS observations (Fig. 3). At the annual scale (ANN), the median bias is modestly positive
at 7.14%, with a wide variability ranging from —82.20% to +100% (standard deviation: 48.01%).
Overestimation dominates 60.4% of the country, primarily in the southern regions, while underestimation
affects 39.6%, mainly across the northern and western arid zones. This indicates a spatially mixed bias

pattern at the annual scale.
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Fig. 3. Seasonal precipitation over Sudan for the annual (ANN), pre-monsoon (March-May; MAM), and monsoon
(June-September; JJAS) seasons during 1991-2014. Panels from left to right show CHIRPS observations, raw CMIP6
ensemble mean precipitation, and the corresponding median bias (CMIP6 — CHIRPS) in percent (%). Hatching

indicates areas where the bias is statistically significant (p < 0.05), determined using two-sample t-tests.



5.3. Bias correction effectiveness

The performance of four bias-correction techniques: Local Intensity Scaling (LOCI), Delta Change
(Delta), Empirical Quantile Mapping (EQM), and Gamma Quantile Mapping (Gamma-QM) was assessed
for ten CMIP6 precipitation models over Sudan during 1991-2014, using CHIRPS observations as the
reference. Model fidelity was evaluated through Pearson correlation (r), Kling—Gupta Efficiency (KGE),
and the centered root-mean-square difference (CRMSD). Figure 4 summarizes inter-model performance
across methods. Both EQM and Gamma-QM deliver the strongest and most consistent improvements.
Mean correlation (mean t standard deviation across models) increases from 0.91 = 0.01 in the raw
ensemble to 0.98 £ 0.01 after EQM and 0.98 *+ 0.01 after Gamma-QM. Correspondingly, mean CRMSD
decreases from 17.7 = 6.5 mm in the raw simulations to 7.7 £ 0.4 mm (EQM) and 7.9 £ 0.5 mm
(Gamma-QM). The average KGE rises sharply from 0.72 £ 0.22 in the uncotrrected models to 0.98 £ 0.01
following both quantile-based corrections, indicating a near-complete recovery of observed precipitation
variability and bias structure. LOCI yields moderate but robust gains, increasing mean correlation to 0.96
1 0.01 and KGE'to 0.94 + 0.03, while reducing CRMSD to 9.6 £ 1.1 mm. In contrast, the Delta method
exhibits greatet inter-model variability, with mean cotrelation 0.93 £ 0.06, mean KGE0.91 £ 0.07, and
CRMSD 12.7 £ 4.6 mm. Although Delta performs comparably to LOCI for several models, its linear
scaling approach fails to capture nonlinear precipitation biases fully, resulting in less uniform

improvements.
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Fig. 4. Heatmaps illustrating Pearson correlation coefficient, Centered Root Mean Square Difference (CRMSD), and
Kling—Gupta Efficiency (KGE) for ten CMIP6 climate models before and after bias correction by LOCI, Delta,
EQM, and Gamma methods. Results are benchmarked against CHIRPS observations over Sudan (annual mean,
1991-2014). Supetior performance is indicated by higher correlation and KGE, and lower CRMSD values, with EQM

and Gamma methods showing consistently better skill.

Overall, these results demonstrate that quantile-based bias-correction approaches (EQM and Gamma-
QM) are the most effective for CMIP6 precipitation simulations over Sudan. They minimize amplitude

errors, enhance temporal coherence with CHIRPS observations, and substantially improve both statistical



reliability and physical realism. Such corrections are therefore essential for downstream hydrological and

climate-impact analyses in the region.

5.4. Uncertainty assessment via bootstrapping

The robustness of each bias-correction method was evaluated using non-parametric bootstrapping with
1,000 replicates across three seasonal periods: annual, pre-monsoon, and monsoon. Four evaluation met-
rics were considered: bias, root mean square error (RMSE), Pearson correlation coefficient (1), and Kling—
Gupta efficiency (KGE). The corresponding bootstrapped medians with 95% confidence intervals (CF5)

are summatized in Table 2.

Table 2. Bootstrapped (median +95% CI) evaluation of CMIP6 precipitation over Sudan for Raw and bias-cortrected
methods (Delta, EQM, Gamma-QM, LOCI) across ANN, MAM, and JJAS petiods. Metrics shown include Kling—
Gupta Efficiency (KGE), RMSE;, Bias, and ABias (%), which represents the percentage reduction in absolute bias rel-

ative to the Raw simulation.

Method | Period KGE RMSE Bias ABias (%)
Raw ANN 0.78 (0.00-0.93) 14.17 (11.79-39.55) —0.48 (—7.54-18.91) 0
Delta ANN 0.98 (0.81-0.99) 2.19 (1.27-19.36) 0.11 (—3.62-1.05) 77
EQM ANN 1.00 (0.99-1.00) 0.11 (0.04-0.64) —0.03 (—0.34——0.01) 94
Gamma | ANN 1.00 (0.99-1.00) 0.13 (0.02-1.33) 0.03 (—0.02-0.41) 94
LOCI ANN 0.98 (0.92-1.00) 1.65 (0.87-3.83) —0.54 (—2.70-0.19) —13
Raw MAM 0.41 (0.00-0.83) 16.52 (11.13-42.07) 5.18 (—9.40-23.90) 0
Delta MAM 0.99 (0.72—1.00) 0.78 (0.08-15.14) —0.14 (—3.24——0.01) 97
EQM MAM 1.00 (0.96-1.00) 0.05 (0.01-1.55) —0.02 (—0.74——0.01) 100
Gamma | MAM 1.00 (0.99-1.00) 0.09 (0.03-0.73) 0.02 (—0.07-0.13) 100
LOCI MAM 0.95 (0.76-0.99) 2.03 (1.33-7.12) —0.03 (—4.50-1.10) 99
Raw | JJAS 0.81 (0.19-0.90) 37.21 (27.57-75.34) —8.33 (—22.85-35.53) 0
Delta | JJAS 0.99 (0.841.00) 1.82 (0.08-39.68) ~0.52 (—7.99——0.02) 94
EQM | JJAS 1.00 (1.00-1.00) 0.31 (0.01-0.89) ~0.07 (—0.35-0.00) 99
Gamma | JJAS 1.00 (1.00-1.00) 0.13 (0.03-0.40) 0.00 (—0.06-0.16) 100
LOCI | JJAS 0.97 (0.95-1.00) 3.98 (0.93-5.95) —1.68 (—3.26-0.24) 80

The bootstrapped results indicate that quantile-based methods (EQM and Gamma-QM) consistently
achieve the highest reduction in absolute bias (ABias %) across all seasons. For the annual period, EQM
achieved the largest improvement with ABias = 94%, closely followed by Gamma-QM (ABias = 94%).
During the pre-monsoon season, both EQM and Gamma-QM fully corrected the mean bias

(ABias = 100%), reflecting near-perfect alignment with CHIRPS observations. In the monsoon petiod,
Gamma-QM slightly outperformed EQM (ABias = 100% vs. 99%), demonstrating robust performance

during the main rainy season.

Other methods, such as LOCI and Delta, generally improved model performance but were less consistent.
Notably, LOCI slightly increased the absolute bias in the annual period (ABias = —13%). Overall, these
findings highlight the superiority of EQM and Gamma-QM for correcting precipitation biases in regions
with complex seasonal variability, such as Sudan, while simultaneously improving KGE, RMSE, and bias

relative to the raw CMIP6 simulations.



5.5. Annual and seasonal evaluation

Figure 5 presents the spatial distribution of seasonal precipitation biases for the ensemble raw and EQM-
corrected CMIPG6 simulations over Sudan, including maps of bias differences and the statistical
significance of the corrections. The raw simulations reveal a mean annual bias close to zero, with a median
of 2.16% and substantial spatial heterogeneity (standard deviation: 69.69%). During March-May, biases are
dominated by overestimation, with a median of 8.86% and standard deviation of 23.64%, while the June-
September period exhibits underestimation, with a median of —6.31% and a standard deviation of 65.22%.
Following EQM bias correction, median biases across all seasons are effectively reduced neatly to zero
(March-May: —0.21%, June-September: —0.15%, annual: —0.71%), and the spread of residual biases is
substantially narrowed (EQM standard deviations: annual 1.01%, March-May 0.43%, June-September
0.71%). The ABias (%), representing the relative improvement after EQM correction, shows a median
reduction of 96.18% for the annual period, 98.42% for March-May, and 98.75% for June-September,

indicating a marked enhancement in model-observation agreement.
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Fig. 5. Spatial distribution of annual and seasonal precipitation biases over Sudan (1991-2014) for the ensemble raw
CMIP6 simulations and EQM bias-corrected outputs. Columns represent (from left to right) the raw bias, EQM-
corrected bias, and the percentage reduction in bias (ABias %) following EQM cortection. Units are mm/year for
the annual (ANN) row and mm/season for seasonal rows (MAM: March—May, JJAS: June—September). Grey shad-
ing in MAM highlights arid northern and central regions with observed precipitation below 10 mm/season, excluded

from the ABias calculation. Hatching indicates areas where bias reduction is statistically significant (p < 0.05).



The observed seasonal biases likely arise from a combination of factors inherent to global climate models,
including limitations in convective parameterizations, representation of orographic effects, and model res-
olution constraints, all of which influence the simulation of precipitation intensity and spatial distribution.
The pronounced overestimation during the pre-monsoon season may reflect difficulties in simulating the

onset of the rainy season, whereas the underestimation during the monsoon season could be related to

deficiencies in representing the full intensity and extent of monsoonal rainfall.

While the EQM bias correction method substantially mitigates these systematic biases, it is important to
note that bias correction techniques primarily adjust the statistical properties of model outputs and do not
address the underlying model physics. Consequently, residual biases and uncertainties may persist, espe-
cially under future climate conditions or outside the calibration period. Moreover, the spatial patterns of
bias correction effectiveness vary, emphasizing the need for continued model development alongside the

application of bias correction approaches.

5.6. Evaluation of model performance

The performance of ten CMIP6 models in reproducing observed precipitation climatology over Sudan
was evaluated for annual and seasonal periods. Empirical Quantile Mapping (EQM) was applied to assess
its influence on model fidelity. Model skill was quantified using correlation, centered root-mean-square
difference expressed as a percentage of observed mean precipitation (CRMSD%) and normalized standard
deviation relative to CHIRPS. Both raw and EQM-corrected simulations were analyzed to determine the

magnitude of improvement following bias correction.

At the annual scale, EQM substantially reduces model errors, with CRMSD decreases ranging from 35%
to 48% compared to the raw simulations (Fig. 6a). EC-Earth3, GFDL-ESM4, and INM-CM4-8 exhibit
the strongest improvements, achieving correlations of 0.97 and CRMSD values below 10% of the

observed annual mean, indicating a highly realistic representation of spatial rainfall vatiability.

During the pre-monsoon season, model performance shows greater variability (Fig. 6b). EQM reduces
CRMSD for all models, with the best-performing models NESM3, EC-Earth3, and GFDL-ESM4)
achieving CRMSD levels of 12-18% of observed seasonal precipitation and correlations between 0.81 and
0.91. These results highlight the effectiveness of EQM in correcting models that initially underestimated

early-season rainfall.

For the main monsoon season, EQM correction again improves simulation fidelity (Fig. 6¢). EC-Earth3,
GFDL-ESM4, and INM-CM4-8 continue to rank highest, with correlations of 0.87-0.88 and CRMSD
values of 15-20% relative to CHIRPS. Although correlations are slightly lower than at the annual scale,

these models consistently capture the spatial distribution of monsoon rainfall.

Overall, converting the evaluation to a percentage-based framework demonstrates that EQM significantly
enhances CMIPG precipitation simulations by reducing systematic biases and improving spatial pattern

agreement across Sudan’s diverse climatic zones.
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Fig. 6. Taylor diagrams for ten CMIP6 models before and after EQM bias correction during (a) annual, (b) March-
May, (c) June-September. Each diagram compares model performance with CHIRPS precipitation over Sudan in
terms of correlation (radial distance), CRMSD (curved distance from the reference point), and standard deviation
(distance from the origin). Star markers denote CHIRPS; circles represent raw models; triangles represent EQM-

corrected models.

Opverall, the Taylor diagram analysis (Fig. 6) demonstrates that EQM bias correction substantially
improves the statistical agreement of CMIP6 ensemble simulations with observations across all seasons.
EC-Earth3, GFDL-ESM4, and INM-CM4-8 are consistently the top performers annually and during the
monsoon season, while NESM3 excels during the pre-monsoon season. These results highlight both the
effectiveness of statistical bias correction and the relative strengths of individual models in capturing

seasonal precipitation dynamics over Sudan.

6. Discussion

The evaluation of CMIP6 precipitation simulations over Sudan reveals substantial variability in model skill,
highlighting the challenges of representing rainfall in arid and semi-arid climates. Raw model outputs ex-
hibit systematic biases, often overestimating rainfall during the pre-monsoon season and underestimating
it duting the main monsoon (Ayugi et al. 2022; Omay et al. 2023). Although annual biases appear smaller
on average, they conceal significant spatial heterogeneity, reflecting compensating errors across northern,
central, and southern Sudan. These discrepancies indicate that even the latest CMIP6 models struggle to
capture convective rainfall initiation, monsoon propagation, and regional orographic influences: issues that

have been documented in other CMIPG6 evaluation studies (Vogel et al. 2018; Toolan et al. 2025).

Application of bias correction methods markedly improves simulation fidelity, although effectiveness var-
ies by technique and season. Quantile-based approaches consistently produce the largest reductions in bias
while improving temporal correlation and overall model performance (Ayugi et al. 2022; Tiku et al. 2025).
These methods effectively mitigate seasonal biases during MAM and JJAS, reducing annual biases substan-
tially. In contrast, simpler methods with linear or intensity-scaling assumptions achieve only moderate im-
provements and fail to capture the nonlinearity of precipitation distributions during early-season rainfall
(Switanek et al. 2017). These findings underscore the importance of advanced, distribution-focused bias

correction in regions with highly seasonal and spatially variable rainfall.



Spatially explicit analyses further demonstrate that bias correction reduces not only the magnitude of er-
rors but also improves the representation of precipitation variability in regions critical for water resources
and agriculture. By excluding arid northern areas with negligible precipitation (<40% of the seasonal
mean), and focusing on statistically significant improvements, this study ensures that methodological en-
hancements are both hydrologically meaningful and regionally robust. Such a spatially refined evaluation
represents an advancement over prior studies, which often assess only mean biases without accounting for

spatial heterogeneity or significance (Ayugi et al. 2022; Omay et al. 2023).

Finally, integrating bias reduction with rigorous model evaluation helps identify both the most reliable
models and the most effective correction methods. This framework demonstrates that even after statistical
correction, intrinsic model characteristics continue to influence seasonal performance. By combining bias
correction with model skill assessment, this study provides a robust approach for improving precipitation

simulations over Sudan and other regions with complex rainfall patterns (Tiku et al. 2025).

7. Conclusions

This study evaluated the performance of multiple bias correction techniques — LOCI, Delta, EQM, and
Gamma-QM — in improving CMIP6 precipitation simulations over Sudan for 1991-2014, using CHIRPS
observations as the reference. Raw CMIP6 models exhibited systematic spatial biases, primarily linked to
misrepresentation of the Intertropical Convergence Zone (ITCZ) and limitations in convective

parameterizations.

Among the tested methods, quantile-based approaches (EQM and Gamma-QM) consistently achieved the
largest improvements across statistical metrics (correlation, CRMSD, bias, and KGE), reducing mean bias
by up to 90 % and enhancing temporal agreement with observations. LOCI and Delta methods provided
moderate improvements, largely correcting mean precipitation, but were less effective in capturing
distributional variability. Bias correction effectiveness varied seasonally and spatially, performing best in
humid southern regions and during the monsoon season, while residual uncertainties persisted in arid

northern areas due to low rainfall and observational limitations.

By integrating multi-metric evaluation, robust bootstrapping, and spatially explicit significance testing, this
study demonstrates that advanced, distribution-focused bias correction substantially enhances model
fidelity, reproducing realistic spatial and temporal variability across annual and seasonal timescales. These
findings provide clear guidance for selecting reliable models and appropriate correction techniques in

climate impact assessments and water-resource planning.

Future work should extend these approaches to daily-scale analyses, incorporate multi-reference datasets,
and explore dynamical downscaling or hybrid correction frameworks to further improve model realism
under changing climate conditions, and to assess the persistence of correction effectiveness under non-

stationary climates.
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